Describing Imperfect-Information Games

Extended Game Description Language GDL-II

- role(r) means that r is a role (i.e. a player) in the game
- init(f) means that f is true in the initial position (state)
- true(f) means that f is true in the current state
- does(r,a) means that role r does action a in the current state
- next(f) means that f is true in the next state
- legal(r,a) means that it is legal for r to play a in the current state
- goal(r,v) means that r gets goal value v in the current state
- terminal means that the current state is a terminal state
- distinct(s,t) means that terms s and t are syntactically different
- random is a player that chooses its moves randomly
- sees(r,p) means that role r perceives p in the next state

COMP4418 11s2

The Monty Hall Game

State Representation

closed(2)

closed(3)

chosen(3)

car(2)

step(3)

5

Monty Hall: Vocabulary

- Object constants candidate
 Player
 noop,
 switch
 Moves
- Functions
 closed(number),
 chosen(number),
 car(number),
 step(number)
 - hide_car(number),
 choose(number),
 open_door(number) Moves

Players and Initial State

<pre>role(candidate)</pre>							
<pre>role(random)</pre>							
<pre>init(closed(1))</pre>							
<pre>init(closed(2))</pre>							
<pre>init(closed(3))</pre>							

init(step(1))

Move Generator

```
% Monty
legal(random, hide_car(D)) <= true(step(1)) ^</pre>
                                true(closed(D))
legal(random, open door(D)) <= true(step(2)) ^</pre>
                                true(closed(D)) ^
                                ¬true(car(D)) ∧
                                rtrue(chosen(D))
legal(random, noop)
                         <= true(step(3))
% Player
legal(candidate,choose(D)) <= true(step(1)) ^</pre>
                                true(closed(D))
legal(candidate,noop) <= true(step(2))</pre>
legal(candidate,noop) <= true(step(3))</pre>
legal(candidate,switch) <= true(step(3))</pre>
```

<pre>next(car(D)) next(car(D))</pre>	<= does(random,hide_car(D)) <= true(car(D))
<pre>next(closed(D))</pre>	<= true (closed(D)) \rightarrow does(random, open_door(D))

next (chosen(D))	<=	<pre>does(candidate,choose(D))</pre>
next (chosen(D))	<=	true (chosen(D)) ∧
		<pre>¬does(candidate,switch)</pre>
next (chosen(D))	<=	does(candidate,switch) ∧
		true(closed(D)) ∧
		□true (chosen(D))

<pre>next(step(2))</pre>	<= true(step(1))
<pre>next(step(3))</pre>	<= true (step(2))
<pre>next(step(4))</pre>	<= true (step(3))

Player's Percept, Termination, Goal

sees(candidate,D) <= does(random, open_door(D))</pre>

Perfect- vs. Imperfect-Information Games

The execution model for GDL and perfect-information games ensures that

- all players know the complete rules
- all players know the initial position
- all moves are deterministic
- all players are immediately informed about each other's moves

The execution model for GDL-II and perfect-information games ensures that

- all players know the complete rules
- all players know the initial position
- all moves are deterministic
- random chooses moves randomly
- players are not automatically informed about each other's moves; their percepts are determined according to sees

The General Game Model

An *n*-player, imperfect-information game is a structure with components:

 $\{r_1, ..., r_n\}$ – players

S – set of states

A₁, ..., A_n, A_{n+1} – n+1 sets of actions, one for each player plus one for **random** P₁, ..., P_n – n sets of percepts, one for each player

 $I_1, ..., I_n, I_{n+1}$ – where $I_i \subseteq A_i \times S$, the legality relations

u: $S \times A_1 \times ... \times A_n \times A_{n+1} \rightarrow S$ – update function

 $\mathfrak{I}_{i}: \mathbb{S} \times \mathbb{A}_{1} \times ... \times \mathbb{A}_{n} \times \mathbb{A}_{n+1} \rightarrow 2^{\mathbb{P}_{i}}$ – information relation, one for each player

 $s_1 \in S$ – initial game state

 $t \subseteq S$ – the terminal states

 $g_1, ..., g_n$ – where $g_i \subseteq S \times IN$, the goal relations

Games in Extensive Form

Other Examples: Kriegspiel

Standard chess in GDL-II requires to add

sees(white,M) <= does(black,M)
sees(black,M) <= does(white,M)</pre>

Omitting these rules gives you Kriegspiel (cf. Slide 10)

To play Kriegspiel effectively, players need to be informed whenever they attempt a move that is invalid in the current position:

sees(R,badMoveTryAgain) <= does(R,M) ^ ¬validMove(M)
sees(black,yourMoveNow) <= does(white,M) ^ validMove(M)
sees(white,yourMoveNow) <= does(black,M) ^ validMove(M)</pre>

Other Examples: Communication, Negotiation

- % player P makes a private offer
- % players see all offers they get sees(Q,offer_by(P,O)) <= does(P,offer(Q,O))</pre>

Syntactic Restrictions

GDL-II has the same syntactic restrictions as GDL (safety, stratification, recursion restriction).

The keywords can only be used as follows.

- 1. role as head of clause only appears in facts (i.e., clauses with empty body)
- 2. random only appears as first argument in role, legal, does
- 3. init only appears as head of clauses and does not depend on any of true, legal, does, next, sees, terminal, goal
- 4. true only appears in bodies of clauses
- 5. does only appears in clause bodies, and none of legal, terminal, goal depends on does
- 6. next only appears as head of clauses
- 7. sees only appears as head of clauses

Game Theory

Example (1)

Example (2)

Ï	න පී	ġ	ģ	Ŵ	ġ		Ï
8	8	ģ			පී	8	Å
					Ø		
			පී				
			2				2
			1				
	1	1		1		1	
Ï			Ż	鬯	ģ		Ï

Example (3) "Agent Battle"

Competition and Cooperation

- The "pathological" assumption (e.g., if a bi-partite state transition graph is used to build the Minimax-search tree) says that opponents choose the joint move that is most harmful for us.
- This is usually too pessimistic for non-zerosum games or games with n > 2 players. Rational opponents choose the move that's best for them rather than the one that's worst for us.

Example

Game Theory gives the answer

Strategies

Game model:

S - set of states $A_1, ..., A_n$ - *n* sets of actions, one for each player $I_1, ..., I_n$ - where $I_i \subseteq A_i \times S$, the legality relations $g_1, ..., g_n$ - where $g_i \subseteq S \times \mathbb{N}$, the goal relations

A strategy *x_i* for player *i* maps every state to a legal move for *i*

 $x_i: S \to A_i$ (such that $(x_i(S), S) \in I_i$)

(Note that even for Chess the number of different strategies is finite. But they outnumber the atoms in the universe.)

Strategies for Agent-Battle

Example strategy for Ag_1 :

```
 \{At(Ag_{1},1,1), At(Ag_{2},5,1), At(Ag_{3},5,5)\} \rightarrow Go(East) 
 \{At(Ag_{1},1,1), At(Ag_{2},5,1), At(Ag_{3},4,5)\} \rightarrow Go(North) 
 \vdots 
 \{At(Ag_{1},1,4), At(Ag_{2},3,3), At(Ag_{3},3,5)\} \rightarrow Go(North) 
 \vdots
```

Similar for Ag_2 , Ag_3

Towards the Normal Form of Games

Each *n*-tuple of strategies directly determines the outcome of a match.

Example:

Start with 7 coins. Players A and B take turn in removing one or two coins. Whoever takes the last coin wins.

Strategy Player A:

$$\{7 \rightarrow 2, 6 \rightarrow 2, 5 \rightarrow 2, 4 \rightarrow 1, 3 \rightarrow 1, 2 \rightarrow 2, 1 \rightarrow 1\}$$

Strategy Player B:

 $\{7\rightarrow2,\,6\rightarrow1,\,5\rightarrow2,\,4\rightarrow1,\,3\rightarrow2,\,2\rightarrow2,\,1\rightarrow1\}$

Outcome: (0, 100)

Games in Normal Form

An *n*-player game in normal form is an *n*+1-tuple

 $\Gamma = (X_1, ..., X_n, u)$

where X_i is the set of strategies for player *i* and

$$u = (u_1, ..., u_n): \underset{i=1}{\overset{n}{\times}} X_i \to \mathbb{N}^i$$

are the utilities of the players for each *n*-tuple of strategies.

Roshambo

2-player games are often depicted as matrices

2-Finger-Morra

Battle of the Sexes

Prisoner's Dilemma

Equilibria

Let $\Gamma = (X_1, ..., X_n, u)$ be an *n*-player game.

 $(x_1^*, ..., x_n^*) \in X_1 \times ... \times X_n$ equilibrium

if for all i = 1, ..., n and all $x_i \in X_i$

 $U_i(X_1^*, ..., X_{i-1}^*, X_i, X_{i+1}^*, ..., X_n^*) \leq U_i(X_1^*, ..., X_n^*)$

An equilibrium is a tuple of optimal strategies: No player has a reason to deviate from his strategy, given the opponents' strategies.

Full Cooperation

Battle of the Sexes

(Note that the outcome for both players is bad if they choose to play different equilibria.)

Cooperation

(Note that the concept of an equilibrium doesn't suffice to achieve the best possible outcome for both players.)

Prisoner's Dilemma

(Note that the outcome which is better for both players isn't even an equilibrium!)

Dominance

A strategy $x \in X_i$ dominates a strategy $y \in X_i$ if

$$U_i(x_1, ..., x_{i-1}, x, x_{i+1}, ..., x_n) \ge U_i(x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_n)$$

for all
$$(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n) \in X_1 \times ... \times X_{i-1} \times X_{i+1} \times ... \times X_n$$
.

A strategy $x \in X_i$ strongly dominates a strategy $y \in X_i$ if *x* dominates *y* and *y* does not dominate *x*.

Assume that opponents are rational: They don't choose a strongly dominated strategy.

Removing Strongly Dominated Strategies

Iterated Dominance

Let a zero-sum game be given by

	а	b	С	d	е
а	10 10 9 2	7	6	9	8
b	10	4	6	9	5
С	9	7	9	8	8
d	2	6	4	3	7

Iterated Dominance (2)

Iterated Dominance (3)

Iterated Dominance (4)

Game Tree Search with Dominance

α - β -Principle Does Not Apply

The Need to Randomise: Roshambo

This game has no equilibrium

2-Finger-Morra

This game, too, has no equilibrium

Mixed Strategies

Let $(X_1, ..., X_n, u)$ be an *n*-player game, then its mixed extension is

$$\Gamma = (P_1, ..., P_n, (e_1, ..., e_n))$$

where for each *i*=1, ..., *n*

 $P_i = \{p_i: p_i \text{ probability measure over } X_i\}$

and for each $(p_1, ..., p_n) \in P_1 \times ... \times P_n$

$$e_i(p_1, ..., p_n) = \sum_{x_1 \in X_1} \sum_{x_n \in X_n} u_i(x_1, ..., x_n) * p_1(x_1) * ... * p_n(x_n)$$

Nash's Theorem.

Every mixed extension of an *n*-player game has at least one equilibrium.

Roshambo

The unique equilibrium is

 $\left(\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right),\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\right)$

2-Finger-Morra

The unique equilibrium is

 $(\boldsymbol{p}_1^*, \boldsymbol{p}_2^*) = \left(\left(\frac{3}{5}, \frac{2}{5} \right), \left(\frac{3}{5}, \frac{2}{5} \right) \right)$

with $e_1(p_1^*, p_2^*) = 46$ and $e_2(p_1^*, p_2^*) = 54$

Iterated Row Dominance for Mixed Strategies

Let a zero-sum game be given by

	а	b	С
а	10	0	8
b	6	4	4
С	2	8	7

Then $p_1 = \left(\frac{1}{2}, 0, \frac{1}{2}\right)$ strongly dominates $p_1' = (0, 1, 0)$. Hence, for all $(p_a', p_b', p_c') \in P_1$ with $p_b' > 0$ there exists a dominating strategy $(p_a, 0, p_c) \in P_1$.

Iterated Row Dominance for Mixed Strategies

Now $p_2 = \left(\frac{1}{2}, \frac{1}{2}, 0\right)$ dominates $p_2' = (0, 0, 1)$.

Iterated Row Dominance for Mixed Strategies

The unique equilibrium is $\left(\left(\frac{3}{8},0,\frac{5}{8}\right),\left(\frac{1}{2},\frac{1}{2},0\right)\right)$.

Further Reading

If you're interested in topics for a project/ thesis/... on Logic-Based Agents or General Game Playing, go to:

http://cgi.cse.unsw.edu.au/~mit

Further Reading

- www.general-game-playing.de
- games.stanford.edu/competition/misc/aaai.pdf
- www.ru.is/faculty/hif/papers/cadiaplayer_aaai08.pdf
- cgi.cse.unsw.edu.au/~mit/Papers/AAAI10a.pdf