
COMP4418 11s2 1General Game Playing 1

Computer Game Playing

COMP4418 11s2 2General Game Playing 1

Deep Blue Beats World Champion (1997)

COMP4418 11s2 3General Game Playing 1

''Game Over'' —Checkers Solved in 2007

COMP4418 11s2 4General Game Playing 1

Computer Go

COMP4418 11s2 5General Game Playing 1

General Game Playing

General Game Players are systems

able to accept a formal description of arbitrary games

able to use such descriptions to play the games effectively

Cognitive Information Processing Technologies for GGP systems:

Knowledge representation

Reasoning

Learning

Rational behaviour

Unlike specialised game players (e.g. Deep Blue), they do not use
algorithms designed in advance for specific games.

COMP4418 11s2 6General Game Playing 1

Tic-Tac-Toe

COMP4418 11s2 7General Game Playing 1

Bidding Tic-Tac-Toe

COMP4418 11s2 8General Game Playing 1

Chess

COMP4418 11s2 9General Game Playing 1

Kriegspiel

COMP4418 11s2 10General Game Playing 1

Single-Player Games

COMP4418 11s2 11General Game Playing 1

Monopoly

COMP4418 11s2 12General Game Playing 1

Poker

COMP4418 11s2 13General Game Playing 1

International Activities
Websites – http://games.stanford.edu

 www.general-game-playing.de

Games

Game Manager

Reference Players

Development Tools

Literature

Annual World Cup

First: Pittsburgh 2005

Most recent: Barcelona 2011

Next: Toronto 2012

 German Open, Berlin 2011

http://games.stanford.edu/

COMP4418 11s2 14General Game Playing 1

General Game Playing and AI

Why games?

Many social, biological, political, and economic processes
can be formalised as (multi-agent) games.

General game-players are rational agents that can adapt to
radically different environments without human intervention.

Application-Specific
System

Client Environment

Client General System Environment

Rules

Ordinary Systems

General Systems

COMP4418 11s2 15General Game Playing 1

How it Works

Game Master

Player
1

Player
2

Player
n

...

Game description
Time to think: 1,800 sec
Time per move: 45 sec
Your role

COMP4418 11s2 16General Game Playing 1

How it Works

Game Master

Player
1

Player
2

Player
n

...

Play

COMP4418 11s2 17General Game Playing 1

How it Works

Game Master

Player
1

Player
2

Player
n

...

Individual moves

COMP4418 11s2 18General Game Playing 1

How it Works

Game Master

Player
1

Player
2

Player
n

...

Individual information
about state/moves

COMP4418 11s2 19General Game Playing 1

How it Works

Game Master

Player
1

Player
2

Player
n

...

End of game

COMP4418 11s2 20General Game Playing 1

Knowledge Representation for GGP:

Describing Games

COMP4418 11s2 21General Game Playing 1

Games as State Machines

a

b

c

d

e

f

g

h

i

j

k

COMP4418 11s2 22General Game Playing 1

Initial State, Terminal States, Simultaneous Moves

a

b

c

d

e

f

g

h

i

j

ka/b
a/b

a/aa/a

b/aa/b

a/b

a/ba/a

a/a

a/a

a/aa/a

a/b

b/b
b/a

b/b

b/b

b/bb/a

COMP4418 11s2 23General Game Playing 1

Game Model (Perfect-Information Games)

An n-player game with perfect information is a structure with components:

{r1, ..., rn} – players

S – set of states

A1, ..., An – n sets of actions, one for each player

l1, ..., ln – where li ⊆ Ai × S, the legality relations

u: S × A1 × ... × An → S – update function

s1 ∈ S – initial game state

t ⊆ S – the terminal states

g1, ... gn – where gi ⊆ S × ℕ, the goal relations

COMP4418 11s2 24General Game Playing 1

Encoding Alternatives

State Machines. Astronomically large state spaces, e.g. ~ 5000 states in Tic-
Tac-Toe, ~1044 states in Chess.

Lists and Tables. Still the same size. Just switching to database states does
not decrease the size of direct representation.

Programs. One possibility is to write a program to generate legal moves and
successor states and to evaluate goals and termination. However, which
language? Java, C? What if a player wants to reason about the structure
of a game in general? This is difficult if the game is encoded in procedural
form.

Logic. There are existing interpreters / compilers. Logic is easier to use for
analysis than procedural encodings.

COMP4418 11s2 25General Game Playing 1

Formal Game Descriptions

Whatever form is used, the description must give all information necessary to
determine legality of moves, state transition, termination, and goals.

Nothing is assumed except for logic.

No arithmetics

No physics

No common sense

(To emphasise this, game descriptions can be written in terms of nonsense
symbols.)

COMP4418 11s2 26General Game Playing 1

Game Description Language

role(r) means that r is a role (i.e. a player) in the game

init(f) means that f is true in the initial position (state)

true(f) means that f is true in the current state

does(r,a) means that role r does action a in the current state

next(f) means that f is true in the next state

legal(r,a) means that it is legal for r to play a in the current state

goal(r,v) means that r gets goal value v in the current state

terminal means that the current state is a terminal state

distinct(s,t) means that terms s and t are syntactically different

In the Game Description Language (GDL), a game is a logic program.

GDL uses the constants 0, 1, ..., 100 and the following predicates as keywords.

COMP4418 11s2 27General Game Playing 1

Tic Tac Toe

cell(1,1,x)

cell(1,2,b)

cell(1,3,b)

cell(2,1,b)

cell(2,2,o)

cell(2,3,b)

cell(3,1,b)

cell(3,2,b)

cell(3,3,x)

control(oplayer)

COMP4418 11s2 28General Game Playing 1

Bidding Tic Tac Toe

cell(1,1,b)

cell(1,2,b)

cell(1,3,b)

cell(2,1,b)

cell(2,2,b)

cell(2,3,b)

cell(3,1,b)

cell(3,2,b)

cell(3,3,b)

coins(xplayer,3)

coins(oplayer,3)

tiebreaker(xplayer)

bidding_stage

COMP4418 11s2 29General Game Playing 1

Bidding Tic Tac Toe: Vocabulary

Object constants
xplayer, oplayer Players
x, o, b Marks
bidding_stage Fluent
with_tiebreaker,
 no_tiebreaker Flags
noop Move

Functions
cell(number,number,mark),
control(player),
coins(player,number),
tiebreaker(player) Fluents
mark(number,number),
bid(number,flag) Moves

Domain predicates

COMP4418 11s2 30General Game Playing 1

Players and Initial State

role(xplayer)

role(oplayer)

init(cell(1,1,b))

init(cell(1,2,b))

init(cell(1,3,b))

init(cell(2,1,b))

init(cell(2,2,b))

init(cell(2,3,b))

init(cell(3,1,b))

init(cell(3,2,b))

init(cell(3,3,b))

init(coins(P,3)) <= role(P)

init(tiebreaker(xplayer))

init(bidding_stage)

COMP4418 11s2 31General Game Playing 1

Move Generator (1)

legal(P,mark(M,N)) <=
 true(cell(M,N,b)) ∧
 true(control(P))

legal(xplayer,noop) <=
 true(control(oplayer))

legal(oplayer,noop) <=
 true(control(xplayer))

cell(1,1,x)

cell(1,2,b)

cell(1,3,b)

cell(2,1,b)

cell(2,2,o)

cell(2,3,b)

cell(3,1,b)

cell(3,2,b)

cell(3,3,x)

coins(xplayer,4)

coins(oplayer,2)

tiebreaker(oplayer)

control(oplayer)

Conclusions: legal(xplayer,noop)

legal(oplayer,mark(1,2))

...

legal(oplayer,mark(3,2))

COMP4418 11s2 32General Game Playing 1

Move Generator (2)

legal(P,bid(B,TB)) <=
 true(bidding_stage) ∧
 true(coins(P,C)) ∧
 less_or_eq(B,C) ∧
 tiebreak_bid(P,TB)

tiebreak_bid(P,with_tiebreaker) <=
 true(tiebreaker(P))

tiebreak_bid(P,no_tiebreaker) <=
 role(P)

cell(1,1,b)

cell(1,2,b)

cell(1,3,b)

cell(2,1,b)

cell(2,2,b)

cell(2,3,b)

cell(3,1,b)

cell(3,2,b)

cell(3,3,b)

coins(xplayer,3)

coins(oplayer,3)

tiebreaker(xplayer)

bidding_stage

Conclusions:

legal(xplayer,bid(1,with_tiebreaker))

legal(xplayer,bid(1,no_tiebreaker))

...

legal(oplayer,bid(1,no_tiebreaker)

...

COMP4418 11s2 33General Game Playing 1

Physics: Example

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
coins(xplayer,4)
coins(oplayer,2)
tiebreaker(oplayer)
control(oplayer)

cell(1,1,x)
cell(1,2,b)
cell(1,3,o)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
coins(xplayer,4)
coins(oplayer,2)
tiebreaker(oplayer)
bidding_stage

oplayer

mark(1,3)

COMP4418 11s2 34General Game Playing 1

Physics (1)

next(cell(M,N,x)) <= does(xplayer,mark(M,N))

next(cell(M,N,o)) <= does(oplayer,mark(M,N))

 next(cell(M,N,W)) <= true(cell(M,N,W)) ∧
 does(P,mark(J,K)) ∧
 (distinct(M,J) ∨ distinct(N,K))

 next(coins(P,C)) <= true(control(Q)) ∧ true(coins(P,C))

 next(tiebreaker(P)) <= true(control(Q)) ∧ true(tiebreaker(P))

next(bidding_stage) <= true(control(P))

COMP4418 11s2 35General Game Playing 1

Physics (2)

next(coins(P,C)) <= true(bidding_stage) ∧
 winner(P) ∧
 does(P,bid(B,TB)) ∧
 true(coins(P,C1)) ∧ add(C,B,C1)

next(coins(xplayer,C)) <= true(bidding_stage) ∧
 winner(oplayer) ∧
 does(oplayer,bid(B,TB)) ∧
 true(coins(P,C1)) ∧ add(C1,B,C)

next(coins(oplayer,C)) <= true(bidding_stage) ∧
 winner(xplayer) ∧
 does(xplayer,bid(B,TB)) ∧
 true(coins(P,C1)) ∧ add(C1,B,C)

COMP4418 11s2 36General Game Playing 1

Physics (3)

 next(tiebreaker(P)) <= true(bidding_stage) ∧ role(P) ∧
 winner(Q) ∧ distinct(P,Q) ∧
 does(Q,bid(B,with_tiebreaker))

 next(tiebreaker(P)) <= true(bidding_stage) ∧
 true(tiebreaker(P)) ∧
 winner(Q) ∧
 does(Q,bid(B,no_tiebreaker))

 next(cell(M,N,W)) <= true(cell(M,N,W)) ∧ true(bidding_stage)

 next(control(P)) <= winner(P) ∧ true(bidding_stage)

COMP4418 11s2 37General Game Playing 1

Termination and Goal Values

terminal <=

 line(x) ∨ line(o)

terminal <=

 ¬open

line(W) <=

 row(M,W) ∨

 column(N,W) ∨

 diagonal(W)

open <=

 true(cell(M,N,b))

goal(xplayer,100) <= line(x)

goal(xplayer, 50) <= draw

goal(xplayer, 0) <= line(o)

goal(oplayer,100) <= line(o)

goal(oplayer, 50) <= draw

goal(oplayer, 0) <= line(x)

draw <=

 ¬line(x) ∧ ¬line(o) ∧ ¬open

COMP4418 11s2 38General Game Playing 1

Supporting Concepts

row(M,W) <=

 true(cell(M,1,W)) ∧
 true(cell(M,2,W)) ∧
 true(cell(M,3,W))

column(N,W) <=

 true(cell(1,N,W)) ∧
 true(cell(2,N,W)) ∧
 true(cell(3,N,W))

diagonal(W) <=

 true(cell(1,1,W)) ∧
 true(cell(2,2,W)) ∧
 true(cell(3,3,W))

diagonal(W) <=

 true(cell(1,3,W)) ∧
 true(cell(2,2,W)) ∧
 true(cell(3,1,W))

COMP4418 11s2 39General Game Playing 1

More Supporting Concepts

winner(P) <= does(P,bid(B1,TB1)) ∧ does(Q,bid(B2,TB2)) ∧
 distinct(P,Q) ∧ greater(B1,B2)

winner(P) <= does(P,bid(B,with_tiebreaker)) ∧
 does(Q,bid(B,no_tiebreaker))

winner(P) <= does(P,bid(B,no_tiebreaker)) ∧
 does(Q,bid(B,no_tiebreaker)) ∧
 distinct(P,Q) ∧
 true(tiebreaker(Q))

succ(0,1) succ(1,2) succ(2,3) ...

greater(X,Y) <= ...

less_or_equal(X,Y) <= ...

add(X,Y,Z) <= ...

COMP4418 11s2 40General Game Playing 1

Completeness

Of necessity, game descriptions are logically incomplete in that they do not
uniquely specify the moves of the players.

 Every game description contains complete definitions for legality, termination,
 goalhood, and update in terms of the relations true and does.

The upshot is that in every state every player can determine legality, termination,
goalhood, and—given a joint move—can update the state.

COMP4418 11s2 41General Game Playing 1

Syntactic Restrictions

1. role as head of clause only appears in facts (i.e., clauses with empty body)

2. init only appears as head of clauses and does not depend on any of
true, legal, does, next, terminal, goal

3. true only appears in bodies of clauses

4. does only appears in clause bodies, and none of legal, terminal,
goal depends on does

5. next only appears as head of clauses

COMP4418 11s2 42General Game Playing 1

Guaranteeing Decidability (1): Safety

A clause is safe if and only if every variable in the
clause appears in some positive subgoal in the body.

Safe Rule:

r(X,Y) <= p(X,Y) ∧ ¬q(X,Y)

Unsafe Rule:

 r(X,Z) <= p(X,Y) ∧ ¬q(Y,Z)

In GDL, all rules are required to be safe.

(Note that this implies all facts to be variable-free.)

COMP4418 11s2 43General Game Playing 1

Dependency Graph

The dependency graph for a set of clauses is a directed graph in which

the nodes are the relations mentioned in the head and bodies of the clauses

there is an arc from a node p to a node q whenever p occurs in the body of a
clause in which q is in the head.

r(X,Y) <= p(X,Y) ∧ q(X,Y)
s(X,Y) <= r(X,Y)

s(X,Z) <= r(X,Y) ∧ t(Y,Z)

t(X,Z) <= s(X,Y) ∧ s(Y,X)

A set of clauses is recursive if its dependency graph contains a cycle. Otherwise,
it is non-recursive.

t

qp

r

s

COMP4418 11s2 44General Game Playing 1

Guaranteeing Decidability (2): Stratification

A set of rules is said to be stratified if there is no recursive
cycle in the dependency graph involving a negation.

Stratified Negation:
t(X,Y) <= q(X,Y) ∧ ¬r(X,Y)
r(X,Z) <= p(X,Y)
r(X,Z) <= r(X,Y) ∧ r(Y,Z)

Negation that is not stratified:
r(X,Z) <= p(X,Y)
r(X,Z) <= p(X,Y) ∧ ¬r(Y,Z)

In GDL, all sets of rules are required to be stratified.

COMP4418 11s2 45General Game Playing 1

Guaranteeing Decidability (3)

If a set of rules contains a clause

 p(s1, ..., sm) <= b1(t1) ∧ ... ∧ q(v1, ..., vk) ∧ ... ∧ bn(tn)

where p and q occur in a cycle in the dependency graph, then for every i ∈ {1, ..., k }

vi is variable-free, or

vi is one of s1, ..., sm, or

vi occurs in some tj such that bj does not occur in a cycle with p in the
dependency graph (1 ≤ j ≤ n).

This ensures that arguments cannot grow arbitrarily through the application of
recursive rules.

→ →

→

COMP4418 11s2 46General Game Playing 1

Playability / Winnability

A game is playable if and only if every player has at least one legal move in every
non-terminal state.

(Note that in chess, if a player cannot move, it is a stalemate. Fortunately, this is a
terminal state.)

In GGP, every game should be playable.

A game is strongly winnable if and only if, for some player, there is a sequence of
individual moves of that player that leads to a terminating goal state for that player.

A game is weakly winnable if and only if, for every player, there is a sequence of
joint moves of the players that leads to a terminating goal state for that player.

In GGP, every game should be weakly winnable, and all single player games
should be strongly winnable.

COMP4418 11s2 47General Game Playing 1

Knowledge Interchange Format

Knowledge Interchange Format is a standard for programmatic

exchange of knowledge represented in relational logic.

Syntax is prefix version of standard syntax.

Some operators are renamed: not, and, or.

Case-independent. Variables are prefixed with ?.

 r(X,Y) <= p(X,Y) ∧ ¬q(Y)

(<= (r ?x ?y) (and (p ?x ?y) (not (q ?y))))

or, equivalently,
(<= (r ?x ?y) (p ?x ?y) (not (q ?y)))

Semantics is the same.

COMP4418 11s2 48General Game Playing 1

Tic Tac Toe in KIF Notation

(role xplayer)
(role(oplayer)

(init (cell 1 1 b))
(init (cell 1 2 b))
(init (cell 1 3 b))
(init (cell 2 1 b))
(init (cell 2 2 b))
(init (cell 2 3 b))
(init (cell 3 1 b))
(init (cell 3 2 b))
(init (cell 3 3 b))
(init (control xplayer))

 (<= (next (cell ?m ?n x))
 (does xplayer (mark ?m ?n))
(<= (next (cell ?m ?n o))
 (does oplayer (mark ?m ?n))
(<= (next (cell ?m ?n ?w))
 (true (cell ?m ?n ?w))
 (does ?p (mark ?j ?k))
 (or (distinct ?m ?j)
 (distinct ?n ?k)))
(<= (next (control xplayer))
 (true (control oplayer)))
(<= (next (control oplayer))
 (true (control xplayer)))

(<= (legal ?p (mark ?m ?n))
 (true (cell ?m ?n b))
 (true (control ?p)))
(<= (legal xplayer noop)
 (true (control oplayer)))
(<= (legal oplayer noop)
 (true (control xplayer)))

(<= (row ?m ?w)
 (true (cell ?m 1 ?w))
 (true (cell ?m 2 ?w))
 (true (cell ?m 3 ?w)))
(<= (column ?n ?w)
 (true (cell 1 ?n ?w))
 (true (cell 2 ?n ?w))
 (true (cell 3 ?n ?w)))
(<= (diagonal ?w)
 (true (cell 1 1 ?w))
 (true (cell 2 2 ?w))
 (true (cell 3 3 ?w)))
(<= (diagonal ?x)
 (true (cell 1 3 ?w))
 (true (cell 2 2 ?w))
 (true (cell 3 1 ?w)))

(<= (line ?w) (row ?m ?w))
(<= (line ?w) (column ?n ?w))
(<= (line ?w) (diagonal ?w))

(<= open
 (true (cell ?m ?n b)))

(<= terminal
 (or (line x) (line o)))
(<= terminal
 (not open))

(<= (goal xplayer 100)
 (line x))
(<= (goal xplayer 50)
 draw)
(<= (goal xplayer 0)
 (line o))
(<= (goal oplayer 100)
 (line o))
(<= (goal oplayer 50)
 draw)
(<= (goal oplayer 0)
 (line x))

COMP4418 11s2 49General Game Playing 1

Playing Games

COMP4418 11s2 50General Game Playing 1

www.general-game-playing.de/downloads.html

Download GameController

Download Basic Players

COMP4418 11s2 51General Game Playing 1

Communication Protocol

Manager sends START message to players
(START <MATCH ID> <ROLE> <GAME DESCRIPTION>
 <STARTCLOCK> <PLAYCLOCK>)
 - Role: the name of the role you are playing (e.g. xplayer or oplayer)
 - Game description: the axioms describing the game
 - Start/play clock: how much time you have before the game begins/per turn

Manager sends PLAY message to players
(PLAY <MATCH ID> <PRIOR MOVES>)

 Prior moves is a list of moves, one per player
 - The order is the same as the order of roles in the game description
 - e.g. ((mark 1 1) noop)
 - Special case: for the first turn, prior moves is nil

Players send back a message of the form MOVE, e.g. (mark 3 2)

When the previous turn ended the game, Manager sends a STOP message
(STOP <MATCH ID> <PRIOR MOVES>)

COMP4418 11s2 52General Game Playing 1

GameControllerApp

COMP4418 11s2 53General Game Playing 1

Implementing a
Basic General Game Player:

Blind Search

COMP4418 11s2 54General Game Playing 1

Single-Player Games: A Simple Example

Pressing button a toggles p.

Pressing button b interchanges p and q.

Initially, p and q are off. Goal: p and q are on.

COMP4418 11s2 55General Game Playing 1

Game Description

(role robot)

Legality

(legal robot a)
(legal robot b)

Update

(<= (next(p) (does robot a) (not (true p)))
(<= (next(q) (does robot a) (true q))

 (<= (next(p) (does robot b) (true q))

(<= (next(q) (does robot b) (true p))

Termination and Goal

(<= terminal (true p) (true q))
(<= (goal robot 100) (true p) (true q))

COMP4418 11s2 56General Game Playing 1

Solving Single-Player Games = Planning

Initial state

{} (since there is no rule for init in this game)

Actions

a Preconditions: none

 Effects: toggles truth-value of p

b Preconditions: none

 Effects: interchanges truth-values of p and q

Goal

 p ∧ q

COMP4418 11s2 57General Game Playing 1

State Transition System

State features: p, q

Actions: a, b

¬p, ¬q p, q

¬p, qp, ¬q

a a a a

b

b

bb

Solution (= Plan): a, b, a

initial state

terminal & goal state

COMP4418 11s2 58General Game Playing 1

Single-Player, Perfect-Information Games

Many single-player games can be solved using standard search techniques

Iterative deepening

Bidirectional search

Special techniques

Constraint solving (suitable for Sudoku, Gene Sequencing and the like)

COMP4418 11s2 59General Game Playing 1

Multi-Player Games: Game Tree Search

COMP4418 11s2 60General Game Playing 1

How to Deal With Simultaneous Moves

s1

s4

s3

s2

ab

bb

ba

aa

s1

s4

s3

s2

bb

ba

aa

a
ab

b

State transition graph Bi-partite graph



COMP4418 11s2 61General Game Playing 1

Minimax

 40
 your move: max

 40 40 10 min

75 40 50 80 40 60 35 20 10

COMP4418 11s2 62General Game Playing 1

Minimax With --Heuristics

 40
 your move: max

 40 ≤40 ≤35 min

75 40 50 80 40 60 35 20 10

COMP4418 11s2 63General Game Playing 1

 horizon

 100 0 50

 Minimax Search Monte Carlo Tree Search
 (random simulations)

Stochastic Search (1)

COMP4418 11s2 64General Game Playing 1

n = 60
v = 40

n = 22
v = 20

n = 18
v = 20

n = 20
v = 80

Stochastic Search (2)

Value of move = Average score returned by simulation

n = # of sample runs
v = average score

COMP4418 11s2 65General Game Playing 1

n = 60
v = 70

Play one random game for each move

For next simulation choose move

 confidence bound

argmax i v iC∗ logn
n i



Stochastic Search (3): Confidence Bounds

 ...

n1 = 4
v1 = 20

n2 = 24
v2 = 65

n3 = 32
v3 = 80

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

