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Computer Game Playing
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Deep Blue Beats World Champion (1997)



COMP4418 11s2 3General Game Playing 1

''Game Over'' —Checkers Solved in 2007
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Computer Go
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General Game Playing

General Game Players are systems

able to accept a formal description of arbitrary games

able to use such descriptions to play the games effectively

Cognitive Information Processing Technologies for GGP systems:

Knowledge representation

Reasoning

Learning

Rational behaviour

Unlike specialised game players (e.g. Deep Blue), they do not use 
algorithms designed in advance for specific games.
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Tic-Tac-Toe
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Bidding Tic-Tac-Toe
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Chess
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Kriegspiel
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Single-Player Games
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Monopoly
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Poker
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International Activities
Websites – http://games.stanford.edu 

                   www.general-game-playing.de

Games

Game Manager

Reference Players

Development Tools

Literature

Annual World Cup

First: Pittsburgh 2005

Most recent: Barcelona 2011

Next: Toronto 2012

                German Open, Berlin 2011

http://games.stanford.edu/
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General Game Playing and AI

Why games?

Many social, biological, political, and economic processes 
can be formalised as (multi-agent) games. 

General game-players are rational agents that can adapt to 
radically different environments without human intervention.

Application-Specific
System

Client Environment

Client General System Environment

Rules

Ordinary Systems

General Systems



COMP4418 11s2 15General Game Playing 1

How it Works

Game Master

Player
1

Player
2

Player
n

...

Game description
Time to think: 1,800 sec
Time per move: 45 sec
Your role
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How it Works

Game Master

Player
1

Player
2

Player
n

...

Play
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How it Works

Game Master

Player
1

Player
2

Player
n

...

Individual moves
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How it Works

Game Master

Player
1

Player
2

Player
n

...

Individual information
about state/moves
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How it Works

Game Master

Player
1

Player
2

Player
n

...

End of game
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Knowledge Representation for GGP:

Describing Games
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Games as State Machines

a

b

c

d

e

f

g

h

i

j

k
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Initial State, Terminal States, Simultaneous Moves

a

b

c

d

e

f

g

h

i

j

ka/b
a/b

a/aa/a

b/aa/b

a/b

a/ba/a

a/a

a/a

a/aa/a

a/b

b/b
b/a

b/b

b/b

b/bb/a
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Game Model (Perfect-Information Games)

An n-player game with perfect information is a structure with components:

{r1, ..., rn} – players

S – set of states

A1, ..., An – n sets of actions, one for each player

l1, ..., ln – where li ⊆ Ai × S, the legality relations

u: S × A1 × ... × An → S – update function

s1 ∈ S – initial game state

t ⊆ S – the terminal states

g1, ... gn – where gi ⊆ S × ℕ, the goal relations
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Encoding Alternatives

State Machines. Astronomically large state spaces, e.g. ~ 5000 states in Tic-
Tac-Toe, ~1044 states in Chess.

Lists and Tables. Still the same size. Just switching to database states does 
not decrease the size of direct representation.

Programs. One possibility is to write a program to generate legal moves and 
successor states and to evaluate goals and termination. However, which 
language? Java, C? What if a player wants to reason about the structure 
of a game in general? This is difficult if the game is encoded in procedural 
form.

Logic. There are existing interpreters / compilers. Logic is easier to use for 
analysis than procedural encodings.
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Formal Game Descriptions

Whatever form is used, the description must give all information necessary to 
determine legality of moves, state transition, termination, and goals.

Nothing is assumed except for logic.

No arithmetics

No physics

No common sense

(To emphasise this, game descriptions can be written in terms of nonsense 
symbols.)
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Game Description Language

role(r)       means that r is a role (i.e. a player) in the game

init(f)       means that f is true in the initial position (state)

true(f)       means that f is true in the current state

does(r,a)     means that role r does action a in the current state

next(f)       means that f is true in the next state

legal(r,a)    means that it is legal for r to play a in the current state

goal(r,v)     means that r gets goal value v in the current state

terminal      means that the current state is a terminal state

distinct(s,t) means that terms s and t are syntactically different

In the Game Description Language (GDL), a game is a logic program.

GDL uses the constants 0, 1, ..., 100 and the following predicates as keywords.



COMP4418 11s2 27General Game Playing 1

Tic Tac Toe

cell(1,1,x)

cell(1,2,b)

cell(1,3,b)

cell(2,1,b)

cell(2,2,o)

cell(2,3,b)

cell(3,1,b)

cell(3,2,b)

cell(3,3,x)

control(oplayer)
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Bidding Tic Tac Toe

cell(1,1,b)

cell(1,2,b)

cell(1,3,b)

cell(2,1,b)

cell(2,2,b)

cell(2,3,b)

cell(3,1,b)

cell(3,2,b)

cell(3,3,b)

coins(xplayer,3)

coins(oplayer,3)

tiebreaker(xplayer)

bidding_stage
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Bidding Tic Tac Toe: Vocabulary

Object constants
xplayer, oplayer        Players                    
x, o, b                      Marks          
bidding_stage Fluent          
with_tiebreaker,                         
  no_tiebreaker Flags              
noop Move

Functions
cell(number,number,mark),
control(player),
coins(player,number),      
tiebreaker(player) Fluents  
mark(number,number),
bid(number,flag) Moves     
 

Domain predicates
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Players and Initial State

role(xplayer)

role(oplayer)

init(cell(1,1,b))

init(cell(1,2,b))

init(cell(1,3,b))

init(cell(2,1,b))

init(cell(2,2,b))

init(cell(2,3,b))

init(cell(3,1,b))

init(cell(3,2,b))

init(cell(3,3,b))

init(coins(P,3)) <= role(P)

init(tiebreaker(xplayer))

init(bidding_stage)
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Move Generator (1)

legal(P,mark(M,N)) <=
  true(cell(M,N,b)) ∧
  true(control(P))

legal(xplayer,noop) <=
  true(control(oplayer))

legal(oplayer,noop) <=
  true(control(xplayer))

cell(1,1,x)

cell(1,2,b)

cell(1,3,b)

cell(2,1,b)

cell(2,2,o)

cell(2,3,b)

cell(3,1,b)

cell(3,2,b)

cell(3,3,x)

coins(xplayer,4)

coins(oplayer,2)

tiebreaker(oplayer)

control(oplayer)

Conclusions: legal(xplayer,noop)

legal(oplayer,mark(1,2))

...

legal(oplayer,mark(3,2))
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Move Generator (2)

legal(P,bid(B,TB)) <=
  true(bidding_stage) ∧
  true(coins(P,C)) ∧             
  less_or_eq(B,C) ∧              
  tiebreak_bid(P,TB)

tiebreak_bid(P,with_tiebreaker) <=
  true(tiebreaker(P))

tiebreak_bid(P,no_tiebreaker)   <=
  role(P)

cell(1,1,b)

cell(1,2,b)

cell(1,3,b)

cell(2,1,b)

cell(2,2,b)

cell(2,3,b)

cell(3,1,b)

cell(3,2,b)

cell(3,3,b)

coins(xplayer,3)

coins(oplayer,3)

tiebreaker(xplayer)

bidding_stage

Conclusions:

legal(xplayer,bid(1,with_tiebreaker))

legal(xplayer,bid(1,no_tiebreaker))

...

legal(oplayer,bid(1,no_tiebreaker)

...
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Physics: Example

cell(1,1,x)
cell(1,2,b)
cell(1,3,b)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
coins(xplayer,4)
coins(oplayer,2)
tiebreaker(oplayer)
control(oplayer)

cell(1,1,x)
cell(1,2,b)
cell(1,3,o)
cell(2,1,b)
cell(2,2,o)
cell(2,3,b)
cell(3,1,b)
cell(3,2,b)
cell(3,3,x)
coins(xplayer,4)
coins(oplayer,2)
tiebreaker(oplayer)
bidding_stage

oplayer

mark(1,3)
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Physics (1)

next(cell(M,N,x)) <= does(xplayer,mark(M,N))

next(cell(M,N,o)) <= does(oplayer,mark(M,N))

 next(cell(M,N,W)) <= true(cell(M,N,W)) ∧   
                      does(P,mark(J,K)) ∧
                      (distinct(M,J) ∨ distinct(N,K))

 next(coins(P,C)) <= true(control(Q)) ∧ true(coins(P,C))

 next(tiebreaker(P)) <= true(control(Q)) ∧  true(tiebreaker(P))

next(bidding_stage) <= true(control(P))
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Physics (2)

next(coins(P,C)) <= true(bidding_stage) ∧                       
                    winner(P) ∧                                 
                    does(P,bid(B,TB)) ∧                         
                    true(coins(P,C1)) ∧ add(C,B,C1)

next(coins(xplayer,C)) <= true(bidding_stage) ∧                 
                          winner(oplayer) ∧                     
                          does(oplayer,bid(B,TB)) ∧             
                          true(coins(P,C1)) ∧ add(C1,B,C)

next(coins(oplayer,C)) <= true(bidding_stage) ∧                 
                          winner(xplayer) ∧                     
                          does(xplayer,bid(B,TB)) ∧             
                          true(coins(P,C1)) ∧ add(C1,B,C)
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Physics (3)

 next(tiebreaker(P)) <= true(bidding_stage) ∧ role(P) ∧         
                        winner(Q) ∧ distinct(P,Q) ∧             
                        does(Q,bid(B,with_tiebreaker))

 next(tiebreaker(P)) <= true(bidding_stage) ∧                   
                        true(tiebreaker(P)) ∧                   
                        winner(Q) ∧                             
                        does(Q,bid(B,no_tiebreaker))

 next(cell(M,N,W)) <= true(cell(M,N,W)) ∧ true(bidding_stage)

 next(control(P)) <= winner(P) ∧ true(bidding_stage)



COMP4418 11s2 37General Game Playing 1

Termination and Goal Values

terminal <=

   line(x) ∨ line(o)

terminal <=

   ¬open

line(W) <=

   row(M,W) ∨

    column(N,W) ∨

    diagonal(W)

open <=

   true(cell(M,N,b))

goal(xplayer,100) <= line(x)

goal(xplayer, 50) <= draw

goal(xplayer,  0) <= line(o)

goal(oplayer,100) <= line(o)

goal(oplayer, 50) <= draw

goal(oplayer,  0) <= line(x)

draw <=

   ¬line(x) ∧ ¬line(o) ∧ ¬open
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Supporting Concepts

row(M,W) <=

   true(cell(M,1,W)) ∧
 true(cell(M,2,W)) ∧
 true(cell(M,3,W))

column(N,W) <=

   true(cell(1,N,W)) ∧
 true(cell(2,N,W)) ∧
 true(cell(3,N,W))

diagonal(W) <=

   true(cell(1,1,W)) ∧
 true(cell(2,2,W)) ∧
 true(cell(3,3,W))

diagonal(W) <=

    true(cell(1,3,W)) ∧
  true(cell(2,2,W)) ∧
  true(cell(3,1,W))
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More Supporting Concepts

winner(P) <= does(P,bid(B1,TB1)) ∧ does(Q,bid(B2,TB2)) ∧  
             distinct(P,Q) ∧ greater(B1,B2)        

winner(P) <= does(P,bid(B,with_tiebreaker)) ∧             
             does(Q,bid(B,no_tiebreaker))                 

winner(P) <= does(P,bid(B,no_tiebreaker)) ∧               
             does(Q,bid(B,no_tiebreaker)) ∧               
             distinct(P,Q) ∧                              
             true(tiebreaker(Q))

succ(0,1)  succ(1,2)  succ(2,3)  ...

greater(X,Y) <= ...

less_or_equal(X,Y) <= ...

add(X,Y,Z) <= ...
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Completeness

Of necessity, game descriptions are logically incomplete in that they do not 
uniquely specify the moves of the players.

  Every game description contains complete definitions for legality, termination, 
  goalhood, and update in terms of the relations true and does.

The upshot is that in every state every player can determine legality, termination, 
goalhood, and—given a joint move—can update the state.
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Syntactic Restrictions

1. role as head of clause only appears in facts (i.e., clauses with empty body)

2. init only appears as head of clauses and does not depend on any of 
true, legal, does, next, terminal, goal

3. true only appears in bodies of clauses

4. does only appears in clause bodies, and none of  legal, terminal, 
goal depends on  does

5. next only appears as head of clauses
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Guaranteeing Decidability (1): Safety

A clause is safe if and only if every variable in the 
clause appears in some positive subgoal in the body.

Safe Rule:

r(X,Y) <= p(X,Y) ∧ ¬q(X,Y) 

Unsafe Rule:

              r(X,Z) <= p(X,Y) ∧ ¬q(Y,Z) 

In GDL, all rules are required to be safe.

(Note that this implies all facts to be variable-free.)
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Dependency Graph

The dependency graph for a set of clauses is a directed graph in which

the nodes are the relations mentioned in the head and bodies of the clauses

there is an arc from a node p to a node q whenever p occurs in the body of a 
clause in which q is in the head.

r(X,Y) <= p(X,Y) ∧ q(X,Y)
s(X,Y) <= r(X,Y)

s(X,Z) <= r(X,Y) ∧ t(Y,Z)

t(X,Z) <= s(X,Y) ∧ s(Y,X)

A set of clauses is recursive if its dependency graph contains a cycle. Otherwise, 
it is non-recursive.

t

qp

r

s
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Guaranteeing Decidability (2): Stratification 

A set of rules is said to be stratified if there is no recursive 
cycle in the dependency graph involving a negation.

Stratified Negation:
t(X,Y) <= q(X,Y) ∧ ¬r(X,Y)
r(X,Z) <= p(X,Y)
r(X,Z) <= r(X,Y) ∧ r(Y,Z)

Negation that is not stratified:
r(X,Z) <= p(X,Y)
r(X,Z) <= p(X,Y) ∧ ¬r(Y,Z)

In GDL, all sets of rules are required to be stratified.
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Guaranteeing Decidability (3)

If a set of rules contains a clause

 p(s1, ..., sm) <= b1(t1) ∧ ... ∧ q(v1, ..., vk) ∧ ... ∧ bn(tn)

where p and q occur in a cycle in the dependency graph, then for every i ∈ {1, ..., k }

vi is variable-free, or

vi is one of s1, ..., sm, or

vi occurs in some tj such that bj does not occur in a cycle with p in the    
dependency graph (1 ≤ j ≤ n).

This ensures that arguments cannot grow arbitrarily through the application of 
recursive rules.

→ →

→
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Playability / Winnability

A game is playable if and only if every player has at least one legal move in every 
non-terminal state.

(Note that in chess, if a player cannot move, it is a stalemate. Fortunately, this is a 
terminal state.)

In GGP, every game should be playable.

A game is strongly winnable if and only if, for some player, there is a sequence of 
individual moves of that player that leads to a terminating goal state for that player.

A game is weakly winnable if and only if, for every player, there is a sequence of 
joint moves of the players that leads to a terminating goal state for that player.

In GGP, every game should be weakly winnable, and all single player games 
should be strongly winnable.



COMP4418 11s2 47General Game Playing 1

Knowledge Interchange Format

Knowledge Interchange Format is a standard for programmatic

exchange of knowledge represented in relational logic.

Syntax is prefix version of standard syntax.

Some operators are renamed: not, and, or. 

Case-independent. Variables are prefixed with ?.

                r(X,Y) <= p(X,Y) ∧ ¬q(Y)

(<= (r ?x ?y) (and (p ?x ?y) (not (q ?y))))

or, equivalently, 
(<= (r ?x ?y) (p ?x ?y) (not (q ?y)))

Semantics is the same.
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Tic Tac Toe in KIF Notation

(role xplayer)
(role(oplayer)

(init (cell 1 1 b))
(init (cell 1 2 b))
(init (cell 1 3 b))
(init (cell 2 1 b))
(init (cell 2 2 b))
(init (cell 2 3 b))
(init (cell 3 1 b))
(init (cell 3 2 b))
(init (cell 3 3 b))
(init (control xplayer))

 (<= (next (cell ?m ?n x))
    (does xplayer (mark ?m ?n))
(<= (next (cell ?m ?n o))
    (does oplayer (mark ?m ?n))
(<= (next (cell ?m ?n ?w))
    (true (cell ?m ?n ?w))
    (does ?p (mark ?j ?k))
    (or (distinct ?m ?j)
        (distinct ?n ?k)))
(<= (next (control xplayer))
    (true (control oplayer)))
(<= (next (control oplayer))
    (true (control xplayer)))

(<= (legal ?p (mark ?m ?n))
    (true (cell ?m ?n b))
    (true (control ?p)))
(<= (legal xplayer noop)
    (true (control oplayer)))
(<= (legal oplayer noop)
    (true (control xplayer)))

(<= (row ?m ?w)
     (true (cell ?m 1 ?w))
     (true (cell ?m 2 ?w))
     (true (cell ?m 3 ?w)))
(<= (column ?n ?w)
     (true (cell 1 ?n ?w))
     (true (cell 2 ?n ?w))
     (true (cell 3 ?n ?w)))
(<= (diagonal ?w)
     (true (cell 1 1 ?w))
     (true (cell 2 2 ?w))
     (true (cell 3 3 ?w)))
(<= (diagonal ?x)
     (true (cell 1 3 ?w))
     (true (cell 2 2 ?w))
     (true (cell 3 1 ?w)))

 

(<= (line ?w) (row ?m ?w))
(<= (line ?w) (column ?n ?w))
(<= (line ?w) (diagonal ?w))

(<= open
    (true (cell ?m ?n b)))

(<= terminal
    (or (line x) (line o)))
(<= terminal
    (not open))
  
(<= (goal xplayer 100)
    (line x))
(<= (goal xplayer 50)
    draw)
(<= (goal xplayer 0)
    (line o))
(<= (goal oplayer 100)
    (line o))
(<= (goal oplayer 50)
    draw)
(<= (goal oplayer 0)
    (line x))
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Playing Games
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www.general-game-playing.de/downloads.html

Download GameController

Download Basic Players
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Communication Protocol

Manager sends START message to players
(START <MATCH ID> <ROLE> <GAME DESCRIPTION>
                         <STARTCLOCK> <PLAYCLOCK>)
    - Role: the name of the role you are playing (e.g. xplayer or oplayer)
    - Game description: the axioms describing the game
    - Start/play clock: how much time you have before the game begins/per turn

Manager sends PLAY message to players
(PLAY <MATCH ID> <PRIOR MOVES>)

        Prior moves is a list of moves, one per player
        - The order is the same as the order of roles in the game description
        - e.g. ((mark 1 1) noop)
        - Special case: for the first turn, prior moves is nil

Players send back a message of the form  MOVE, e.g. (mark 3 2)

When the previous turn ended the game, Manager sends a STOP message
(STOP <MATCH ID> <PRIOR MOVES>)
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GameControllerApp
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Implementing a
Basic General Game Player:

Blind Search
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Single-Player Games: A Simple Example

Pressing button a toggles p.

Pressing button b interchanges p and q.

Initially, p and q are off. Goal: p and q are on.
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Game Description

(role robot)

Legality

(legal robot a)
(legal robot b)

Update

(<= (next(p) (does robot a) (not (true p)))
(<= (next(q) (does robot a) (true q))

     (<= (next(p) (does robot b) (true q))

(<= (next(q) (does robot b) (true p))

Termination and Goal

(<= terminal (true p) (true q))
(<= (goal robot 100) (true p) (true q))
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Solving Single-Player Games = Planning

Initial state

{}   (since there is no rule for init in this game)

Actions

a Preconditions: none

 Effects: toggles truth-value of  p

b Preconditions: none

 Effects: interchanges truth-values of  p  and  q

Goal

  p ∧ q
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State Transition System

State features:   p, q

Actions:    a, b

¬p, ¬q p, q

¬p, qp, ¬q

a a a a

b

b

bb

Solution (= Plan): a, b, a

initial state

terminal & goal state
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Single-Player, Perfect-Information Games

Many single-player games can be solved using standard search techniques

Iterative deepening

Bidirectional search

Special techniques

Constraint solving (suitable for Sudoku, Gene Sequencing and the like)
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Multi-Player Games: Game Tree Search
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How to Deal With Simultaneous Moves

s1

s4

s3

s2

ab

bb

ba

aa

s1

s4

s3

s2

bb

ba

aa

a
ab

b

State transition graph Bi-partite graph


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Minimax

       40
       your move: max

      40        40         10   min

75 40 50 80 40 60 35  20   10
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Minimax With --Heuristics

       40
       your move: max

      40       ≤40                 ≤35   min

75 40 50 80 40 60 35  20   10
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            horizon

  100      0       50

            Minimax Search                       Monte Carlo Tree Search                  
                                                                     (random simulations)

Stochastic Search (1)
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 ... ... ...

n = 60
v = 40

n = 22
v = 20

n = 18
v = 20

n = 20
v = 80

Stochastic Search (2)

Value of move = Average score returned by simulation 

n = # of sample runs
v = average score
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n = 60
v = 70

Play one random game for each move

For next simulation choose move

       confidence bound

argmax i v iC∗ logn
n i



Stochastic Search (3): Confidence Bounds

 ...

n1 = 4
v1 = 20

n2 = 24
v2 = 65

n3 = 32
v3 = 80

 ... ...
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