Outline

- Single-Player Games = Planning
- Planning under incomplete information

Single-Player Games

© Mopic * www.ClipartOf.com/433340

A (Very) Simple Planning Problem

Pressing button *a* toggles *p*.

Pressing button *b* interchanges *p* and *q*.

Initially, *p* and *q* are off. Goal: *p* and *q* are on.

Problem Specification

```
role(robot)
Legality
    legal (robot, a)
    legal(robot,b)
Update
    next(p) <= does(robot,a) \lambda \text{"true(p)}</pre>
                  ∨ does(robot,b) ∧ true(q)
    next(q) <= does(robot,a) \land true(q)</pre>
                  ∨ does(robot,b) ∧ true(p)
Termination and Goal
    terminal <= true(p) \lambda true(q)</pre>
    goal(robot,100) <= true(p) \lambda true(q)</pre>
```

State Transition System

Features: p, q

Actions: a, b

Solving Single-Player Games = Planning

Initial state

{}

Actions

a Preconditions: none

Effects: toggles truth-value of p

b Preconditions: none

Effects: interchanges truth-values of p and q

Goal

 $p \wedge q$

Solution (= Plan): a, b, a

Single-Player Games with Complete Information

Many single-player games can be solved using standard search techniques introduced earlier in this course

- Iterative deepening
- Bidirectional search

Special techniques

- Constraint solving (suitable for Sudoku, Gene Sequencing and the like)
- Answer set programming (suitable for Peg Jumping, 15-Puzzle and the like)

Informed search uses heuristic functions. In general game playing, the rules are not known in advance and heuristics must be constructed automatically.

More on this a little later.

Planning Under Incomplete Information: Maze World

Initial State: (ac) (robot in a, gold in c)

Environment Model

Agent Actions

Agent Percepts

Initial State and Goal

Planning

Planning is the process of finding a transition diagram *for our agent* that causes its environment to go from any initial state to a goal state.

Planning can be done *offline* and the resulting plan/program installed in the agent *or* the planning can be done *online* followed by execution.

State Space Planning

Incompleteness

Possible sources of incompleteness:

Partial knowledge of

- Initial state
- Transition diagram for environment
- Goal

Complete Planning Techniques under incomplete information

- Coercion (e.g. do the grab action at all locations)
- Conditional plan (e.g. if see the gold grab it; else move)

Postponement Techniques

Delayed planning

Initial State Uncertainty

Sequential State Set Progression

Sequential State Set Plan

Plan Execution

Conditional State Set Progression

Conditional State Set Plan

Comparison

Sequential plan

- possible that no plan exists
- plan may contain redundant moves

Conditional plan

large search space

Delayed planning

irreversibility problematic

As we can see from this analysis, it is sometimes desirable for an agent to do only a portion of its planning up front, secure in the knowledge that it can do more later as necessary.

Planning can be done *offline* and the resulting plan/program executed during play *or* the planning can be done *online* and interleaved with execution.