COMP3411 11s1 Logic Programming

Outline

@ Implementing a basic general game player
@ Foundations of logic programming

@ Metagaming: rule optimisation

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1

Logic Programming

Uses of Logic

Use logical reasoning for game play

@ Computing the legality of moves

@ Computing consequences of actions
@ Computing goal achievement

@ Computing termination

Easy to convert from logic to other representations:
many orders of magnitude speedup on simulations

Things that may better be done in Logic
@ Game Reformulation
@ Game Analysis

COMP3411

© Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1

Logic Programming

Available Basic Players

Downloads - General Game Playing 2/05/11 12:25 PM
Home We provide programs that might help you to implement your own General Game Playing system. All programs
T : contain source code and are distributed under GPL.
Activities

Research
Literature
G’étéirng Starrterd
Dé@ﬁloads o

Links

GAMECONTROLLER
GameController is a standalone game master clone written entirely in Java and developed as part of the GGPServer
project. It is particularly useful for testing your own general game playing system. GameController comes with a
simple GUI and a command linc interface. Send bug reports and suggestions to Stephan Schiffel.
Download the most recent version from the sourceforge project page.
System requirements:

+ Java 1.6 runtime environment

usage:

Basic ProLoG PLAYER <

A basic player implemented in ECLIPSe Prolog based on code from FLUXPLAYER
Download current version (1.1)
System requirements:

+ ECLiPSe Prolog version 5.10 or higher

Changes since version 1.0

 the port should be free now after stopping the player

(last update: 12 March 2009)

Basic Java PLAYER

A basic player implemented in Java which comes with a framework for implementing your strategies, analyzing the

game, etc. It can be found on the Palamedes-IDE website.

Basic C++ PLaver

A basic player implemented in C++ with the reasoner of the prolog player above.

Download current version (1.6)

Sysrem requirements -

* Linux/Unix (or any system which provides sockets)

htep:/ fwn

a _htmi Page 1 of 2

Prolog Player

Java Player

C++ Player

COMP3411

© Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

All Players Use Some Form of Logic Programming

true(cell (1,1,b))

true(cell (3,3,b))
true(control (xpl ayer))

| egal (P,mark(M N)) <= true(cell (M N, b)) A true(control (P))
| egal (xpl ayer, noop) <= true(control (opl ayer))
| egal (opl ayer, noop) <= true(control (xplayer))

Given this logic program, answer the query

?- legal (P, M

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Substitutions

A substitution is a finite set of replacements of variables by terms

[Xla, Yf(b), VIW

The result of applying a substitution o to an expression ¢ is the expression o
obtained from ¢ by replacing every occurrence of every variable in the
substitution by its replacement.

P(X, X Y, Z2){Xa, Y f(b),VIW = p(a,a,f(b), 2

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Unification

A substitution o is a unifier for an expression ¢ and an expression y if
and only if po=yo.

move(X, Y){X/ a, Y/ b, VI b} = nove(a,b)
nove(a, V){X/ a, Y/ b, V/b} = nove(a,b)

If two expressions have a unifier, they are said to be unifiable.
nmove(X, X) and nove(a, b) not unifiable

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Most General Unifiers

@ A substitution o is more general than a substitution 6 if and only if
there is a substitution T such that ¢ o 1= 0.

@ A substitution o is a most general unifier (mgu) of two expressions if
and only if it is more general than any other unifier.

Theorem: If two expressions are unifiable, then they have an mgu
that is unique up to variable permutation.

nmove(X, Y){ X/ a, Y/ V} nove(a, V)
nove(a, V){X/ a, YV} = nove(a,V)

move(X, Y){X/ a, VI Y} = nove(a,Y)
nove(a, V){X/ a,V/ Y} = nove(a,Y)

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Resolution

Given:
Query L, A L, A ... A L, (without negation)

Clauses (without negation)

Let:
A<=B, A ... A B, “fresh” variant of a clause

o mgu of L, and A

ThenL, ALLA..A L, B/ A.. AB,ALA..AL,)O
is a resolution step.

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Query Answering

@ A sequence of resolution steps is called a derivation.

@ A successiul derivation ends with the empty query.

@ The answer substitution (computed by a successful derivation) is obtained
by composing the mgu's o, o ... o g, of each step

(and restricting the result to the variables in the original query).

@ Afailed derivation ends with a query to which no clause applies.

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Example

true(cell (1,1,Db))

true(cell (3,3,b))
true(control (xpl ayer))

| egal (P, mark(M N)) <= true(cell (M N b)) A true(control (P))
| egal (xpl ayer, noop) <= true(control (opl ayer))
| egal (opl ayer, noop) <= true(control (xpl ayer))

Query ?- | egal (P, M has the following answers:

{P/ xplayer, Mmark(1,1)},
{ Pl opl ayer, M noop}

., {P/Ixplayer, M mark(3, 3)}

COMP3411 © Michael Thielscher, Michael Genesereth 2011

10

COMP3411 11s1 Logic Programming

Query Answering with Negation

Given:
Query L, AL, A ... AL,
Clauses

@ IfL,is an atom, proceed as before

@ |[fL, is of the form -A:

- if all derivations for A fail then
LALLA..AL, > L A ... AL,

- if there is a successful derivation for A then
L, AL, A ... AL, — fail

COMP3411 © Michael Thielscher, Michael Genesereth 2011

11

COMP3411 11s1

Logic Programming

Example

rol e(red)

rol e(bl ue)

rol e(green)
true(freecell (blue))

trapped(P) <= role(P) A —true(freecell (P))
goal (P,100) <= role(P) A -trapped(P)

Query ?- goal (P, 100) has the only answer { P/ bl ue}

COMP3411

© Michael Thielscher, Michael Genesereth 2011

12

COMP3411 11s1 Logic Programming "

Query Answering with Disjunction

A clause with a disjunction
A<=BA(C,VvC,)AD
is logically equivalent to the conjunction of the clauses

A<=BAC,AD
A<=BAC,AD

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Some Rules You Don't Want to Allow

rol e(pl ayer (X))

next (control (white)) <=p
next (control (black)) <=r

p <= ~f
r <= ﬁp

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

How to Guarantee Finiteness (Part 1)

A clause is safe if and only if every variable in the clause
appears in some positive subgoal in the body.

@ Safe Rule:
r(x,Y) <= p(XY) Oq(yY,2) 0O -r(X 2

@ Unsafe Rule:
r(X,2) <=p(XY) 0Oq(Y, X

@ Unsafe Rule:
r(xX,Y) <= p(XY) 0-q(,2)

In GDL, all rules are required to be safe.
(Note that this implies all facts to be variable-free.)

COMP3411 © Michael Thielscher, Michael Genesereth 2011

15

COMP3411 11s1 Logic Programming

Dependency Graph

The dependency graph for a set of clauses is a directed graph in which
@ the nodes are the relations mentioned in the head and bodies of the clauses

@ there is an arc from a node p to a node g whenever p occurs in the body of a
clause in which q is in the head.

t
r(XY) <= p(XY) A a(XY) ?]
s(X,Y) <= r(XY) ;
S(X,Z2) <=r1r(XY) A t(Y,2 ,
t(X 2Z2) <=5s(XY) A s(Y,X $

| |
P q

A set of clauses is recursive if its dependency graph contains a cycle.

COMP3411 © Michael Thielscher, Michael Genesereth 2011

16

COMP3411 11s1 Logic Programming

How to Guarantee Finiteness (Part 2)

A set of rules is said to be stratified if there is no recursive cycle in
the dependency graph involving a negation.

@ Stratified:
t(X’Y) <= CI(X,Y) A _'r(X1Y)
r(X,2) <= p(XY)
r(xX,2) <=r(XY) A r(Y,2

@ Not stratified:
r(X,2) <= p(XY)
r(X, 2 <=p(XY) A r(Y,2

In GDL, all game descriptions are required to be stratified.

COMP3411 © Michael Thielscher, Michael Genesereth 2011

17

COMP3411 11s1 Logic Programming

Metagaming: Rule Optimisation

Example:

goal (X, 2) <= p(X,Y) A q(Y,2) A distinct(Y,Db)
Better:

goal (X,2) <= p(X, YY) A distinct(Y,b) A q(Y, 2

The argument domains can be determined from the rules of the game with the
help of the dependency graph.

succ(0, 1)

succ(1, 2) @ 0
succ(2, 3) 1
init(step(0)) @

next (step(X)) <= ’ 2
true(step(Y)) A @
succ(Y, X 3

COMP3411 © Michael Thielscher, Michael Genesereth 2011

18

COMP3411 11s1 Logic Programming

Rule Optimisation Based on Domains

Example:
w ns(P) <= true(cell (X, Y,P)) A corner(X Y) A Kking(P)

Solution Set Sizes:
|true(cell (X, Y,P))]| = 768
| corner (X, Y)]| = 4
| queen(P) | = 2

Better Version:
wi ns(P) <= king(P) A corner(X, Y) A true(cell(XY,P))

COMP3411 © Michael Thielscher, Michael Genesereth 2011

19

COMP3411 11s1 Logic Programming

Pre-Computing Answers

The ancestor relation is the transitive closure of the parent relation:

ancestor (X, Y) <= parent (X Y)
ancestor (X, Z) <= ancestor(X,Y) A ancestor(Y, 2)

The “samefamily” relation is true of all pairs of people that are relatives,
i.e., that have a common ancestor:

sf(Y,Z) <= ancestor (X, Y) A ancestor(X 2)

If we pre-compute ancest or then we increase the computational efficiency of
answering the query sf .

Hitch: database storage space

COMP3411 © Michael Thielscher, Michael Genesereth 2011

20

COMP3411 11s1 Logic Programming 2!

Not a Good ldea to Pre-Compute sf

john

F()/\ fom
- /\ Jill

jack art
steve
ann frank
joe ellie

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Better: Pre-Compute ancest or

j()hn
I()I?Z
jack Jill
steve
ann frank
ellie

COMP3411 © Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Even Better: Pre-Compute a New Relation

]ohn
rom
jack J il
steve
ann frank
ellie

john
rob tom
jac) art
Jill
steve
ann frank

joe ellie

COMP3411

© Michael Thielscher, Michael Genesereth 2011

COMP3411 11s1 Logic Programming

Outlook: Building a Good General Game Player

@ Playing Single-Player Games (a.k.a. Planning)
@ Stochastic Search

@ Automatic Heuristics Generation

COMP3411 © Michael Thielscher, Michael Genesereth 2011

24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

