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Implementing a basic general game player

Foundations of logic programming

Metagaming: rule optimisation
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Uses of Logic

Use logical reasoning for game play

Computing the legality of moves

Computing consequences of actions

Computing goal achievement

Computing termination

Easy to convert from logic to other representations:             
many orders of magnitude speedup on simulations

Things that may better be done in Logic

Game Reformulation

Game Analysis
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Available Basic Players

Prolog Player

Java Player

C++ Player
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All Players Use Some Form of Logic Programming

true(cell(1,1,b))
...  
true(cell(3,3,b))
true(control(xplayer))

legal(P,mark(M,N)) <= true(cell(M,N,b)) ∧ true(control(P))
legal(xplayer,noop) <= true(control(oplayer))
legal(oplayer,noop) <= true(control(xplayer))

Given this logic program, answer the query 
                    
                       ?- legal(P,M)
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Substitutions

A substitution is a finite set of replacements of variables by terms

{X/a, Y/f(b), V/W}

The result of applying a substitution  to an expression  is the expression  
obtained from  by replacing every occurrence of every variable in the 
substitution by its replacement.

       p(X,X,Y,Z){X/a,Y/f(b),V/W} = p(a,a,f(b),Z)
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Unification

A substitution  is a unifier for an expression  and an expression  if 
and only if =.

move(X,Y){X/a,Y/b,V/b} = move(a,b)
move(a,V){X/a,Y/b,V/b} = move(a,b)

If two expressions have a unifier, they are said to be unifiable.

move(X,X) and move(a,b) not unifiable
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Most General Unifiers

A substitution  is more general than a substitution  if and only if 
there is a substitution τ such that  ○ τ = .

A substitution  is a most general unifier (mgu) of two expressions if 
and only if it is more general than any other unifier.

Theorem: If two expressions are unifiable, then they have an mgu

that is unique up to variable permutation.

move(X,Y){X/a,Y/V} = move(a,V)
move(a,V){X/a,Y/V} = move(a,V)

move(X,Y){X/a,V/Y} = move(a,Y)
move(a,V){X/a,V/Y} = move(a,Y)
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Resolution

Given:

Query L1 ∧ L2 ∧ ... ∧ Lm (without negation)

Clauses (without negation)

Let:

A <= B1 ∧ ... ∧ Bn “fresh” variant of a clause

 mgu of L1 and A

Then L1 ∧ L2 ∧ ... ∧  Lm → (B1 ∧ ... ∧ Bn ∧ L2 ∧ ... ∧ Lm)

is a resolution step.
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Query Answering

A sequence of resolution steps is called a derivation.

A successful derivation ends with the empty query.

A failed derivation ends with a query to which no clause applies.

The answer substitution (computed by a successful derivation) is obtained   
   by composing the mgu's 1 ○ ... ○ n of each step

        (and restricting the result to the variables in the original query).
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Example

true(cell(1,1,b))
...   
true(cell(3,3,b))
true(control(xplayer))

legal(P,mark(M,N)) <= true(cell(M,N,b)) ∧ true(control(P))
legal(xplayer,noop) <= true(control(oplayer))
legal(oplayer,noop) <= true(control(xplayer))

Query ?- legal(P,M) has the following answers:
 
 {P/xplayer, M/mark(1,1)}, ..., {P/xplayer, M/mark(3,3)}
 {P/oplayer, M/noop}
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Query Answering with Negation

Given:

Query L1 ∧ L2 ∧ ... ∧ Lm

Clauses

If L1 is an atom, proceed as before

If L1 is of the form ¬A:

       - if all derivations for A fail then
        L1 ∧ L2 ∧ ... ∧ Lm  →  L2 ∧ ... ∧ Lm

       - if there is a successful derivation for A then
        L1 ∧ L2 ∧ ... ∧ Lm  →  fail
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Example

role(red)
role(blue)
role(green)
true(freecell(blue))

trapped(P) <= role(P) ∧ ¬true(freecell(P))

goal(P,100) <= role(P) ∧ ¬trapped(P)

      

       Query ?- goal(P,100) has the only answer {P/blue}
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Query Answering with Disjunction

A clause with a disjunction

A <= B ∧ (C1 ∨ C2) ∧ D

is logically equivalent to the conjunction of the clauses

A <= B ∧ C1 ∧ D

A <= B ∧ C2 ∧ D
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Some Rules You Don't Want to Allow

role(player(X))

next(control(white)) <= p
next(control(black)) <= r

p <= ¬r

r <= ¬p
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How to Guarantee Finiteness (Part 1)

A clause is safe if and only if every variable in the clause 
appears in some positive subgoal in the body.

Safe Rule:
      r(X,Y) <= p(X,Y) ∧ q(Y,Z) ∧ ¬r(X,Z)

Unsafe Rule:
      r(X,Z) <= p(X,Y) ∧ q(Y,X)

Unsafe Rule:
      r(X,Y) <= p(X,Y) ∧ ¬q(Y,Z)

In GDL, all rules are required to be safe.

(Note that this implies all facts to be variable-free.)
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Dependency Graph

The dependency graph for a set of clauses is a directed graph in which

the nodes are the relations mentioned in the head and bodies of the clauses

there is an arc from a node p to a node q whenever p occurs in the body of a 
clause in which q is in the head.

r(X,Y) <= p(X,Y) ∧ q(X,Y)
s(X,Y) <= r(X,Y)

s(X,Z) <= r(X,Y) ∧ t(Y,Z)

t(X,Z) <= s(X,Y) ∧ s(Y,X)

A set of clauses is recursive if its dependency graph contains a cycle.

t

qp

r

s
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How to Guarantee Finiteness (Part 2) 

A set of rules is said to be stratified if there is no recursive cycle in 
the dependency graph involving a negation.

Stratified:
t(X,Y) <= q(X,Y) ∧ ¬r(X,Y)
r(X,Z) <= p(X,Y)
r(X,Z) <= r(X,Y) ∧ r(Y,Z)

Not stratified:
r(X,Z) <= p(X,Y)
r(X,Z) <= p(X,Y) ∧ ¬r(Y,Z)

In GDL, all game descriptions are required to be stratified.
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Example:

goal(X,Z) <= p(X,Y) ∧ q(Y,Z) ∧ distinct(Y,b)

Better:

goal(X,Z) <= p(X,Y) ∧ distinct(Y,b) ∧ q(Y,Z)

The argument domains can be determined from the rules of the game with the 
help of the dependency graph.

 succ(0,1)
 succ(1,2)
 succ(2,3)
 init(step(0))
 next(step(X)) <=

   true(step(Y)) ∧

    succ(Y,X)

step/1

succ/2

succ/1

0

3

2

1

Metagaming: Rule Optimisation
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Rule Optimisation Based on Domains

Example:

wins(P) <= true(cell(X,Y,P)) ∧ corner(X,Y) ∧ king(P)

Solution Set Sizes:
|true(cell(X,Y,P))| = 768
|corner(X,Y)| =   4
|queen(P)| =   2

Better Version:

wins(P) <= king(P) ∧ corner(X,Y) ∧ true(cell(X,Y,P))
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Pre-Computing Answers

The ancestor relation is the transitive closure of the parent relation:

ancestor(X,Y) <= parent(X,Y)

ancestor(X,Z) <= ancestor(X,Y) ∧ ancestor(Y,Z)

The “samefamily” relation is true of all pairs of people that are relatives, 
i.e., that have a common ancestor:

sf(Y,Z) <= ancestor(X,Y) ∧ ancestor(X,Z)

If we pre-compute ancestor then we increase the computational efficiency of 
answering the query sf.

Hitch: database storage space
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Not a Good Idea to Pre-Compute sf
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Better: Pre-Compute ancestor
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Even Better: Pre-Compute a New Relation
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Outlook: Building a Good General Game Player

Playing Single-Player Games (a.k.a. Planning)

Stochastic Search

Automatic Heuristics Generation
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