
1

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Implementing a basic general game player

Foundations of logic programming

Metagaming: rule optimisation

Outline

2

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Uses of Logic

Use logical reasoning for game play

Computing the legality of moves

Computing consequences of actions

Computing goal achievement

Computing termination

Easy to convert from logic to other representations:
many orders of magnitude speedup on simulations

Things that may better be done in Logic

Game Reformulation

Game Analysis

3

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Available Basic Players

Prolog Player

Java Player

C++ Player

4

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

All Players Use Some Form of Logic Programming

true(cell(1,1,b))
...
true(cell(3,3,b))
true(control(xplayer))

legal(P,mark(M,N)) <= true(cell(M,N,b)) ∧ true(control(P))
legal(xplayer,noop) <= true(control(oplayer))
legal(oplayer,noop) <= true(control(xplayer))

Given this logic program, answer the query

 ?- legal(P,M)

5

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Substitutions

A substitution is a finite set of replacements of variables by terms

{X/a, Y/f(b), V/W}

The result of applying a substitution to an expression is the expression
obtained from by replacing every occurrence of every variable in the
substitution by its replacement.

 p(X,X,Y,Z){X/a,Y/f(b),V/W} = p(a,a,f(b),Z)

6

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Unification

A substitution is a unifier for an expression and an expression if
and only if =.

move(X,Y){X/a,Y/b,V/b} = move(a,b)
move(a,V){X/a,Y/b,V/b} = move(a,b)

If two expressions have a unifier, they are said to be unifiable.

move(X,X) and move(a,b) not unifiable

7

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Most General Unifiers

A substitution is more general than a substitution if and only if
there is a substitution τ such that ○ τ = .

A substitution is a most general unifier (mgu) of two expressions if
and only if it is more general than any other unifier.

Theorem: If two expressions are unifiable, then they have an mgu

that is unique up to variable permutation.

move(X,Y){X/a,Y/V} = move(a,V)
move(a,V){X/a,Y/V} = move(a,V)

move(X,Y){X/a,V/Y} = move(a,Y)
move(a,V){X/a,V/Y} = move(a,Y)

8

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Resolution

Given:

Query L1 ∧ L2 ∧ ... ∧ Lm (without negation)

Clauses (without negation)

Let:

A <= B1 ∧ ... ∧ Bn “fresh” variant of a clause

 mgu of L1 and A

Then L1 ∧ L2 ∧ ... ∧ Lm → (B1 ∧ ... ∧ Bn ∧ L2 ∧ ... ∧ Lm)

is a resolution step.

9

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Query Answering

A sequence of resolution steps is called a derivation.

A successful derivation ends with the empty query.

A failed derivation ends with a query to which no clause applies.

The answer substitution (computed by a successful derivation) is obtained
 by composing the mgu's 1 ○ ... ○ n of each step

 (and restricting the result to the variables in the original query).

10

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Example

true(cell(1,1,b))
...
true(cell(3,3,b))
true(control(xplayer))

legal(P,mark(M,N)) <= true(cell(M,N,b)) ∧ true(control(P))
legal(xplayer,noop) <= true(control(oplayer))
legal(oplayer,noop) <= true(control(xplayer))

Query ?- legal(P,M) has the following answers:

 {P/xplayer, M/mark(1,1)}, ..., {P/xplayer, M/mark(3,3)}
 {P/oplayer, M/noop}

11

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Query Answering with Negation

Given:

Query L1 ∧ L2 ∧ ... ∧ Lm

Clauses

If L1 is an atom, proceed as before

If L1 is of the form ¬A:

 - if all derivations for A fail then
 L1 ∧ L2 ∧ ... ∧ Lm → L2 ∧ ... ∧ Lm

 - if there is a successful derivation for A then
 L1 ∧ L2 ∧ ... ∧ Lm → fail

12

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Example

role(red)
role(blue)
role(green)
true(freecell(blue))

trapped(P) <= role(P) ∧ ¬true(freecell(P))

goal(P,100) <= role(P) ∧ ¬trapped(P)

 Query ?- goal(P,100) has the only answer {P/blue}

13

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Query Answering with Disjunction

A clause with a disjunction

A <= B ∧ (C1 ∨ C2) ∧ D

is logically equivalent to the conjunction of the clauses

A <= B ∧ C1 ∧ D

A <= B ∧ C2 ∧ D

14

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Some Rules You Don't Want to Allow

role(player(X))

next(control(white)) <= p
next(control(black)) <= r

p <= ¬r

r <= ¬p

15

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

How to Guarantee Finiteness (Part 1)

A clause is safe if and only if every variable in the clause
appears in some positive subgoal in the body.

Safe Rule:
 r(X,Y) <= p(X,Y) ∧ q(Y,Z) ∧ ¬r(X,Z)

Unsafe Rule:
 r(X,Z) <= p(X,Y) ∧ q(Y,X)

Unsafe Rule:
 r(X,Y) <= p(X,Y) ∧ ¬q(Y,Z)

In GDL, all rules are required to be safe.

(Note that this implies all facts to be variable-free.)

16

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Dependency Graph

The dependency graph for a set of clauses is a directed graph in which

the nodes are the relations mentioned in the head and bodies of the clauses

there is an arc from a node p to a node q whenever p occurs in the body of a
clause in which q is in the head.

r(X,Y) <= p(X,Y) ∧ q(X,Y)
s(X,Y) <= r(X,Y)

s(X,Z) <= r(X,Y) ∧ t(Y,Z)

t(X,Z) <= s(X,Y) ∧ s(Y,X)

A set of clauses is recursive if its dependency graph contains a cycle.

t

qp

r

s

17

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

How to Guarantee Finiteness (Part 2)

A set of rules is said to be stratified if there is no recursive cycle in
the dependency graph involving a negation.

Stratified:
t(X,Y) <= q(X,Y) ∧ ¬r(X,Y)
r(X,Z) <= p(X,Y)
r(X,Z) <= r(X,Y) ∧ r(Y,Z)

Not stratified:
r(X,Z) <= p(X,Y)
r(X,Z) <= p(X,Y) ∧ ¬r(Y,Z)

In GDL, all game descriptions are required to be stratified.

18

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Example:

goal(X,Z) <= p(X,Y) ∧ q(Y,Z) ∧ distinct(Y,b)

Better:

goal(X,Z) <= p(X,Y) ∧ distinct(Y,b) ∧ q(Y,Z)

The argument domains can be determined from the rules of the game with the
help of the dependency graph.

 succ(0,1)
 succ(1,2)
 succ(2,3)
 init(step(0))
 next(step(X)) <=

 true(step(Y)) ∧

 succ(Y,X)

step/1

succ/2

succ/1

0

3

2

1

Metagaming: Rule Optimisation

19

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Rule Optimisation Based on Domains

Example:

wins(P) <= true(cell(X,Y,P)) ∧ corner(X,Y) ∧ king(P)

Solution Set Sizes:
|true(cell(X,Y,P))| = 768
|corner(X,Y)| = 4
|queen(P)| = 2

Better Version:

wins(P) <= king(P) ∧ corner(X,Y) ∧ true(cell(X,Y,P))

20

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Pre-Computing Answers

The ancestor relation is the transitive closure of the parent relation:

ancestor(X,Y) <= parent(X,Y)

ancestor(X,Z) <= ancestor(X,Y) ∧ ancestor(Y,Z)

The “samefamily” relation is true of all pairs of people that are relatives,
i.e., that have a common ancestor:

sf(Y,Z) <= ancestor(X,Y) ∧ ancestor(X,Z)

If we pre-compute ancestor then we increase the computational efficiency of
answering the query sf.

Hitch: database storage space

21

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Not a Good Idea to Pre-Compute sf

22

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Better: Pre-Compute ancestor

23

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Even Better: Pre-Compute a New Relation

24

COMP3411

Logic ProgrammingCOMP3411 11s1

© Michael Thielscher, Michael Genesereth 2011

Outlook: Building a Good General Game Player

Playing Single-Player Games (a.k.a. Planning)

Stochastic Search

Automatic Heuristics Generation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

