
Neural Networks for High-Resolution State Evaluation in General Game Playing

Daniel Michulke
Department of Computer Science
Dresden University of Technology

daniel.michulke@mailbox.tu-dresden.de

Abstract

C−IL2P is an algorithm that transforms a propositional do-
main theory to a neural network that correctly represents the
domain theory and is ready-to-use without prior training. Its
original intention was to transform explicit symbolic knowl-
edge into a neural network to allow for learning.
The game playing agent system presented in (Michulke and
Thielscher 2009) uses the algorithm differently: By trans-
forming the symbolic description of the goal of a game to
a neural network it obtains an evaluation function for states
of that game. Much like fuzzy logic, the network can be used
for graded inference while retaining correctness. But in con-
trast to fuzzy logic, the network is able to learn and may con-
sequently improve with experience, which is unique among
competing agents and arguably an important advantage in
a game playing setting. However, since not intended for
this use, the transformation algorithm produces networks that
cannot correctly represent complex domain theories with-
out losing their ability to distinguish some input vectors that
ought to have a different evaluation.
In this paper we introduce a generalization of C− IL2P that
addresses the above issue. It structures the formerly mono-
lithic approach of logic-to-network transformation to allow
for lower weights in the network. This increases the out-
put resolution by several orders of magnitude, as experiments
demonstrate, while maintaining correctness.

1 Introduction
C − IL2P (d’Avila Garcez and Gabbay 2002) is an algo-
rithm that transforms a set of propositional rules to a neural
network. In this way, it is possible to create a neural network
from a propositional domain theory without prior training or
search for good initialization parameters. At the same time
the neural network correctly represents the domain theory
and can be trained using standard algorithms such as back-
propagation.

A different application of such a network is as an infer-
ence tool that works on real numbers representing truth val-
ues. The network input is a vector of truth values and the
network evaluates to what extent the domain theory holds on
the input. This approach is used in (Michulke and Thielscher
2009) to generate a state evaluation function for a general
game playing agent. The propositionalized goal of the game
(as stated in a game rules) is considered the domain theory
and a game state the input. The output of the network for any

given state corresponds to the output of the goal definition
of the game and is therefore useful for distinguishing goal
states from non-goal states. Moreover, the output is at same
time monotonic, meaning that states that correspond more to
the goal of the game produce a higher output. The network
thus extrapolates from goal states to non-goal states and is a
good evaluation function that can be used to guide search to
the most favorable among the states searched.

Additionally, it can also be trained, e.g. using standard
backpropagation, which especially in the game playing en-
vironment is an important advantage. However, in their pa-
per they also state that C − IL2P sets tight constraints on
weights in order to ensure correctness. A by-product of this
is that the network loses its ability to distinguish states from
each other under certain circumstances.

For this reason we present a generalization of C − IL2P
that imposes much weaker constraints on the weight settings
than its algorithmic predecessor. As a result, much more
complex domain theories can be represented by the resulting
network while at the same time the output of the network is
descriptive (different states produce different outputs) and
correct. We demonstrate the benefit of our new approach
in the domain of General Game Playing where experiments
in more than 160 games show that the ability to correctly
distinguish states from each other increases by several orders
of magnitude when compared to C − IL2P .

Note that the approach is not a fuzzy inference engine
in the strict sense. The constructed networks do, however,
possess important properties such as correctness and mono-
tonicity and therefore behave similar to fuzzy inference en-
gines.

The remainder of this paper is organized as follows: In
the next section we give the necessary background for this
paper and show a simple case where a network constructed
usingC−IL2P cannot distinguish between different inputs.
In section 3 we introduce a structured approach on rule-to-
neuron transformation and, based on this, present an algo-
rithmic description of our approach in 4. Finally, we demon-
strate that our new approach improves the abilities of neural
networks to represent complex domain theories(section 5)
and conclude in section 6.



2 Background
2.1 State Evaluation in General Game Playing
In General Game Playing (GGP), the rules of a game are
given minutes before the corresponding match starts. These
rules are encoded in the Game Description Language (GDL,
(Love et al. 2008)) and define the roles (e.g. white and black
in Chess), initial state, legal moves, state transitions, termi-
nal states and goals for each role. Agents thus cannot rely
on any preprogrammed behaviors but have to autonomously
develop a strategy for the game.

A core part of the strategy is the state evaluation func-
tion. It maps states to values and indicates how good a state
is. In any state, the agent then takes the move that leads to
the state with maximum state value. While there are sev-
eral agents with different approaches on what to use as an
evaluation function, the approach of (Schiffel and Thielscher
2007), called Fluxplayer, seems particularly intriguing as it
does not exhibit the problems of other approaches such as
assuming opponent random behavior, as e.g. in (Finnsson
and Björnsson 2008), or time-consuming feature guessing
and evaluation mechanisms, as in (Clune 2007).

Instead, it derives an evaluation function directly from
the goal conditions of the game. These goal conditions
are predicate logic formulas that are transformed by first
ground-instantiating them and then evaluating the result-
ing propositional logic formulas using t-norm fuzzy logics.
The approach is successful with Fluxplayer constantly be-
ing among the top 4 agents in the annual worldwide cham-
pionship in GGP.

A similar approach by (Michulke and Thielscher 2009)
uses neural networks instead of t-norm fuzzy logics, based
on the idea that its ability to learn should prove an impor-
tant edge against other agents, given that human-level intel-
ligence builds on both, logic and learning. This article deals
with the resolution problem outlined in their GGP agent sys-
tem and shows how the problem’s impact can be greatly re-
duced. While there are other possibilities to address the res-
olution problem (e.g. using high-precision arithmetic), we
know of none that does not imply higher computational cost
when used for evaluation. This, however, is prohibitive in a
game playing setting where the time needed for state evalu-
ation is critical property of the algorithm.

2.2 Neuro-Symbolic Integration
Neuro-Symbolic Integration (NSI) was originally intended
to unify neural networks and symbolic representations of
knowledge to combine the capability to learn of neural net-
works with the logic reasoning facilities of an explicit repre-
sentation. It is basically concerned with encoding a domain
theory into a network, training the network and possibly
extracting knowledge afterwards again. This process con-
stitutes a cycle that enables transforming both systems into
each other, see (Bader and Hitzler 2005) for an overview.

In the light of our different application of NSI con-
cepts, KBANN (Knowledge-Based Artificial Neural Net-
work, (Towell, Shavlik, and Noordenier 1990)) is the only
comparable algorithm. It transforms an “approximately cor-
rect” propositional domain theory to a unipolar neural net-

work. Training was then used to correct the errors in the
initial theory. When applied as classifier, KBANN learned
faster and qualitatively performed better than other learning
algorithms. However, the theoretical framework restricted
its application to domain theories with only small numbers
of rules and antecedents per rule.
C − IL2P (d’Avila Garcez and Gabbay 2002) addresses

this problem using bipolar networks, but the networks still
require weights too high to be used for correctly fuzzy-
evaluating inputs while at the same time retaining the ability
to distinguish among all possible inputs.

2.3 The C − IL2P algorithm
C − IL2P represents the propositional values for truth
and falsity as intervals of the output o of a bipolar neu-
ron. If a propositional variable is true, the corresponding
neuron gives a value of o ∈ [Amin, 1] while an output
o ∈ [−1, Amax] is interpreted as falsity. Outputs o < −1 or
o > 1 lie outside of the co-domain of the activation function
h(x) = 2

1+e−x − 1 while outputs in the non-empty interval
(Amax, Amin) are guaranteed to not occur by restricting the
weights of connections to the neuron (parameter W , equa-
tion (4)). Usually, −Amax = Amin is set, allowing propo-
sitional negation to be encoded as arithmetic negation. For
simplicity we describe the algorithm in a slightly modified
form. C − IL2P transforms rules of the form

q ⇐
⊗

1≤i≤k

pi with
⊗
∈ {

∧
,
∨
} (1)

where q is an atom and the pi are positive or negative liter-
als. A rule is represented by k+ 1 neurons where k neurons
represent the literals pi that have an outgoing connection to
the k + 1st neuron representing the head. Negative literals
are represented just as positive literals, but with their con-
nection weight negated. In addition to these k connections,
a connection to the bias unit (which has constant output 1)
is added that works as a threshold θ. The weight of this con-
nection is set depending on the number k of children and the
operator

⊗
∈ {

∧
,
∨
}:

θ∧(k) = −θ∨(k) =
(1 +Amin) ∗ (1− k)

2
∗W (2)

The parameter Amin determines the truth threshold above
which a neural output value represents truth andW the stan-
dard weight for any connection within the neural network.
Both can be chosen freely, but are subject to the following
restrictions:

1 > Amin >
kmax − 1

kmax + 1
(3)

W ≥ 2 ∗ ln(1 +Amin)− ln(1−Amin)

kmax(Amin − 1) +Amin + 1
(4)

kmax is the maximum number of antecedents a rule has.

C−IL2P for Fuzzy Evaluation Due to the monotonicity
of the activation function, an input that corresponds better to
the domain theory also produces a higher output of the net-
work. Given that the network at the same time correctly rep-
resents the domain theory, it can be used for fuzzy inference.



However, with the steepness h′(x) = 1− h(x)2 of the acti-
vation function approximating zero for high absolute values
of x, neurons encoding a conjunction (disjunction) with few
(many) fulfilled antecedents may produce the same network
output as the following example demonstrates:

Example 1. Consider a neuron z representing a conjunction
of the output of 4 preceding neurons z ⇐

∧4
i=1 yi. We

assume the maximal number of children of a node to be k =
4 and set Amin = −Amax = 0.9 > 0.6 and W = 4 ≥ 3.93,
fulfilling thus equations (3) and (4). The following table
shows the neural activation az = W ∗(θ∧(k)+t) and output
oz = h(az) of neuron z for t of the 4 yi representing true
(having output 1).

true antecedents t activation az output oz
0 -27.4 -1.000000
1 -19.4 -1.000000
2 -11.4 -0.999978
3 -3.4 -0.935409
4 4.6 0.980096

While the neuron correctly encodes a conjunction, it is not
able to distinguish the cases where none or one antecedent
is fulfilled. This is due to the resolution imposed (10−6),
but occurs similarly in all finite floating-point representa-
tions such as 32-bit computers. This lack of distinction be-
comes worse when the output values are propagated through
the network.

The main reason for this behavior is the weight restric-
tion in equation (4). The higher the absolute weights are,
the more likely the activation of a neuron is far away from
zero. This is a consequence of the global setting of W and
Amin that depend on the maximum number of antecedents
of a rule kmax and implies weights higher than necessary for
nodes with k < kmax children. Moreover, the minimum and
maximum output values of each neuron are fixed to −1 and
1. Possible lower values are thus not considered for weight
determination.

3 Local Neuron Transformation
We reduce these effects in our more general version of C −
IL2P . We begin by defining a standard neuron.

Definition 1 (Standard Neuron). Let z be an input layer neu-
ron with no predecessors and the output value oz ∈ O ⊂
[−1, 1] OR a neuron with

• a real weight wz ,
• a real bias biasz ,
• and the unbiased input îz =

∑
y∈pred(z) oy where

pred(z) 6= ∅ is the non-empty set of preceding neurons
to z,

• the biased input iz = îz + biasz ,
• the bipolar activation function h(x) = 2

1+e−x − 1,
• the output oz = h(wz ∗ iz).

Then we call z a standard neuron.

Like in C − IL2P , we represent truth and falsity of a
propositional variable by a neuron with an output value in
a specified interval. However, instead of using the intervals

[−1, Amax] and [Amin, 1] with Amax and Amin as global
parameters, we generalize by parameterizing the minimum
false and maximum true output value (−1 and 1 respec-
tively) and by setting all parameters locally, that is, for each
neuron individually. Let a propositional variable q be repre-
sented by a neuron z with output oz . Then we define:

q ⇔ oz ∈ [o+z , o
++
z ] ¬q ⇔ oz ∈ [o−−z , o−z ]

We will use the term limits to refer to the quadruple
(o−−z , o−z , o

+
z , o

++
z ) of output parameters of a neuron z.

In order to interpret a neuron output value as a propo-
sitional variable, we must ensure that the output intervals
for true and false, are distinct, that is, they do not overlap
o−z < o+z . We furthermore constrain propositional truth to
positive values and falsity to negative values o−z < 0 < o+z .
This will allow us later to define propositional negation as
arithmetic negation.

We call a neuron fulfilling this constraint representative.

Definition 2 (Representative Neuron). Let z be a standard
neuron with the output value oz .

Then we call z representative if the set of possible output
values Oz = {oz} is identical to the set of real values Oz =
[o−−z , o−z ] ∪ [o+z , o

++
z ] and o−z < 0 < o+z .

With o−−z ≤ o−z and o+z ≤ o++
z the two intervals of a

representative neuron z are not empty: [o−−z , o−z ] 6= ∅ 6=
[o+z , o

++
z ]. Along with the output range [−1, 1] of the acti-

vation function the following inequalities hold:

−1 ≤ o−−z ≤ o−z < 0 < o+z ≤ o++
z ≤ 1

Note that any neuron is representative regardless of its
absolute weight: Since from o−z < 0 < o+z follows
h(wz ∗ i−z ) < 0 < h(wz ∗ i+z ) and h(x) is an odd func-
tion (h(−x) = −h(x)), a representative neuron remains
representative if we change its current weight wz to another
weight w′z as long as the sign of the weight is the same
sgn(wz) = sgn(w′z). This enables us to set the weight
freely without confusing truth values.

Our line of argumentation now goes as follows: Consider
the rule q ⇐

⊗
1≤i≤k

pi with
⊗
∈ {

∧
,
∨
}. We assume that

the positive form of all literals pi has already been translated
to the neurons yi and that these neurons {yi : 0 ≤ i ≤ k}
are representative. Then we create a neuron z that represents
q by doing the following:

Output-Input Mapping map the output values oy of all
neurons y to the input value îz such that îz ∈ [̂i+z , î

++
z ]⇔

q and îz ∈ [̂i−−z , î−z ]⇔ ¬q
Distinct Input increase the weights wy of all neurons y

such that î−z < î+z

Representative Neuron set the bias biasz such that z is
representative

We obtain a complete representation of the rule without hav-
ing to impose a constraint on the weight wz . Instead, we set
the weights wy of the predecessors y ∈ pred(z) . The three
steps will be explained subsequently.



Output-Input Mapping The output-input mapping de-
fines how to derive the input limits of a neuron z from a
set of output limits of its predecessors y ∈ pred(z). These
limits determine the input intervals that represent truth and
falsity depending on the type of rule (conjunction or disjunc-
tion) and the output limits of the preceding neurons.

î++
z =

∑
y∈pred(z)

o++
y î−−z =

∑
y∈pred(z)

o−−y (5)

î+z,and =
∑

y∈pred(z)

o+y î−z,and = î++
z − min

y∈pred(z)
o++
y − o−y

î−z,or =
∑

y∈pred(z)

o−y î+z,or = î−−z + min
y∈pred(z)

o+y − o−−y

The limits are calculated according to four scenarios: The
maximum truth and minimum false values î++

z and î−−z are
simply the sum of the corresponding output values and can
be considered the best-case values as they are the values
with the maximum possible distance to the ambiguous value
0.

The worst-case values depend on the operator: Conjunc-
tions represent a worst-case truth if their predecessors repre-
sent worst-case truth. However, they become false if all pre-
decessors give even the best-case truth value with the excep-
tion of one that gives the maximum false (worst-case false)
value. The truth values for disjunctions are calculated simi-
larly.

Finally, negation is represented by arithmetical negation.
If z represents a rule where the neuron y is a negative an-
tecedent then substitute y by a neuron y′ with the negated
output limits:

o++
y′ = −o−−y o+y′ = −o−y (6)

o−−y′ = −o++
y o−y′ = −o+y

Note that neither weight nor bias of z are set at this stage but
the propositional meaning defined instead.

Since the resulting intervals may overlap, i.e. î−z < î+z
cannot be guaranteed, we “separate” the two intervals by
setting the weights wy in the following step.

Distinct Input We show that a weight wy for the prede-
cessors y of a neuron z exists such that the input of z is
distinct. We use the parameter ∆z

!
= î+ − î− to refer to

the difference by which the input intervals of z are distinct.
For simplicity, we assume −i− = i+, consequently it holds
−o− = o+. This assumption will be justified in theorem 2.
Theorem 1. Let z be a standard neuron representing a con-
junction or disjunction of its predecessors y ∈ pred(z) as
given in equation (5). Furthermore, let all predecessors be
representative standard neurons with −i− = i+. Then for
an arbitrary ∆z < 2 there exists a weight wy for all neu-
rons y such that the input of z is distinct by at least ∆z , i.e.
î+z ≥ î−z + ∆z .

wy ≥ −
1

i+min

ln
2−∆z

∆z + 2k
(7)

min refers to the neuron that has the minimum worst-case
truth value i+min of all neurons y ∈ pred(z).

Proof for Conjunctive Case (Sketch).

î+z
!
≥ î−z + ∆z∑

y∈pred(z)

o+y ≥
∑

y∈pred(z)

o++
y − min

y∈pred(z)
(o++

y − o−y ) + ∆z

k ∗ min
y∈pred(z)

o+y ≥ k − min
y∈pred(z)

(1 + o+y ) + ∆z

(k + 1) ∗ (o+min − 1) ≥ ∆z − 2

o+min ≥
∆z − 2

k + 1
+ 1

wmin ≥ −
1

i+min

ln
2−∆z

∆z + 2k

Since i+min is smallest by definition, the weight bounds of
any neuron y ∈ pred(z) is less or equal to wmin.

The proof is similar for the disjunctive case. The result
is the worst-case lower bound for the weights wy such that
the input of z is distinct by at least ∆z . In extreme cases,
this bound corresponds to the weight bound in C − IL2P .
However, our algorithm calculates these parameters locally
and benefits thus from any situation that does not represent
a worst-case.

Besides, the result shows that 2 > ∆ is a precondition
for all successor neurons, ensuring thereby that ∆ is smaller
than the maximum possible output difference of a neuron
o++ − o−− = 2.

Representative Neurons Now we just set the bias such
that z itself is representative.

Theorem 2. Let z be a standard neuron with distinct input.
By setting

biasz =
−î−z − î+z

2
(8)

z is representative.

Proof(Sketch). It holds i−z = −i+z 6= 0. Since the activation
function h(x) is odd and strictly monotonically increasing
for w > 0, the input interval directly translates to a repre-
sentative output interval.

Note that by setting the bias in between the limits î− and
î+, we obtain −i− = i+ and −o− = o+.

4 Transformation Algorithm
A basic algorithm can now be constructed that translates
a rule of the form q ⇐

⊗
1≤i≤k

pi with
⊗
∈ {

∧
,
∨
} to a

neuron. We consider the pi already transformed to the neu-
rons yi. Thus their biased input limits (iy) are set while the
weights wy are not. The algorithm sets these weights wy for
each y and the input limit îz by doing the following:

1. calculate the output limits oy of each predecessor neuron
y ∈ pred(z) for a weight wy



2. calculate the input limits îz (equation (5))

3. if the input limit is distinct then calculate the bias (equa-
tion (8)), else increase wy and return to step 1

The algorithm can be applied to generate a complete net-
work by calling it on a set of rules. When transforming to
a neuron z, it sets the biasz and the input limits iz together
with the weights wy of its preceding neurons. The trans-
formation works thus simultaneously on two levels of the
network and we must pay attention to the input layer and
output layer neurons. Since output layer neurons have no
successor, they need not guarantee an output distinct by ∆
and their weight can thus be set tow = 1. On the other hand,
input layer neurons need no bias and weight settings as they
have well-defined output values.

4.1 Soundness
Since all input layer neurons are defined such that they are
representative and we set the bias of each neuron such that it
is representative it holds that every neuron is representative.
To show that the transformation of a neuron is sound, we
show that the output of a neuron z correctly represents a
conjunction or disjunction of the variables represented by
its predecessor neurons.

Theorem 3. If the neurons yi represent the variables pi in
the rule q ⇐

⊗
1≤i≤k

pi with
⊗
∈ {

∧
,
∨
} then we can con-

struct a neuron z such that it represents q.

Proof. Due to the monotonicity of the activation function,
we limit the proof to border cases. The proof for the dis-
junction is omitted as it is similar.

We show that if all predecessor neurons represent true,
the conjunction neuron z also represents true: ∀y ∈
pred(z) : oy ≥ o+y → oz ≥ o+z . It follows:∑

y

oy ≥
∑
y

o+y = î+z

îz ≥ î+z

As all neurons y are representative, we set a positive weight
such that î+z > î−z , and from monotonicity of the activation
function h(x) follows that oz ≥ o+z .

If one predecessor neuron y∗ represents false, the con-
junction neuron z also represents false: ∃y∗ ∈ pred(z) :
oy∗ ≤ o−y∗ → oz < o−y . The maximum unbiased input
îz,max is then

îz,max =
∑

y∈pred(z)

o++
y − o++

y∗ − o−y∗

îz,max ≤
∑

y∈pred(z)

o++
y − min

y∈pred(z)
o++
y − o−y = î−z

Again, we set a positive weight wy such that î+z > î−z , and
from monotonicity follows that oz ≤ o−z .

4.2 Open Problems
When transforming a graph to a network, the weights of a
node y are processed by all of its successors and might be
increased. If a node z sets the weight wy of one of his pre-
decessors and later a sibling z′ of z increases this weight
wy , the absolute output values of y are increased and might
decrease the difference between i−z and i+z under certain cir-
cumstances.

There is no straightforward way of handling this problem
due to the setting of wy and the input limits iz for each neu-
ron z. The neuron transformation therefore implicitly ranges
over two levels of the neural network. The simplest way
to handle the scenario is to recalculate the neuron param-
eters for all previously transformed parent nodes of y and
their successors if the weight wy is increased. This can be
time-consuming in the worst-case. Therefore we propose a
heuristics that transforms the rules with the highest number
of antecedents first as they are more likely to lead to higher
weights. In addition, if the propositional domain theory has
a layered structure (e.g. when in Disjunctive Normal Form),
it is possible to transform it layer by layer, starting with the
lowest. Once a layer is transformed, the weights of the pre-
ceding layer need not be recomputed anymore.

A second issue is that, unlike the original C − IL2P , our
approach is not directly designed to work on cyclic domain
theories such as a⇐ b, b⇐ a. Although we consider such a
scenario unlikely, cyclic domains do not invalidate our the-
oretical foundation of a rule-to-neuron transformation. In-
stead, the top-level algorithm would have to be modified,
and one might e.g. opt to start from a C−IL2P constructed
network and gradually reduce weights and see whether neu-
rons remain representative and their input distinct by ∆z .

In these scenarios, however, we consider it unlikely that
resolution and the capability to distinguish between different
input vectors play an important role. However, in case they
do, simple modifications to the transformation algorithm

5 Experiments
While having proved that our algorithm is correct and as
such suitable for translating a set of propositional rules to
a neural network, we now demonstrate that it gives a higher
output resolution than standard C − IL2P . We do this in
the domain of General Game Playing since it is our intended
domain of application. Recall that due to the problem out-
lined in Example 1 different input vectors (in GGP: game
states) are mapped to the same value, though one state ful-
fills more propositions of the domain theory (in GGP: the
goal function) than the other.

Therefore we tested the networks generated by standard
C − IL2P and by our generalized version on (by the time
of the evaluation) 197 valid game descriptions submitted to
the GGP server at Dresden University of Technology1. 36
of these games have a trivial goal condition without con-
junctions or disjunctions, consequently no network can be
constructed. We transformed the goal description of the re-
maining 161 games to a propositional domain theory using

1http://euklid.inf.tu-dresden.de:8180/ggpserver



the same techniques as in (Michulke and Thielscher 2009).
We then transformed this domain theory to neural networks
and evaluated all states of the game that are reachable from
the initial state by one move. Our hypotheses are that 1.
the networks constructed with our algorithm evaluate these
states to a bigger output interval than C − IL2P and 2. that
our approach can distinguish more of these states from each
other. The latter is a direct consequence of the first hypoth-
esis as a higher resolution implies a better treatment of situ-
ations as given in example 1.

To avoid superposition of outputs of different networks in
the evaluation function, we evaluate a state by using only the
output of the network of the first role in the game descrip-
tion and only for the goal condition winning the game. In
this way, we keep results comparable for games that have
a higher number of roles and goals. Figure 5 depicts our
evaluation results. The x-axis represents the number of the
game name in alphabetical order. Though game names have
no linear relationship, we chose a line chart as different vari-
ants of the same game often have an alphabetically similar
name.

Bigger Output Interval In the lower part of figure 5 we
see the logarithm (base 10) of the size of the output interval
of all 161 nontrivial games. We determine the size of the
output interval by evaluating all states of depth 1 with our
network and subtracting the minimum value from the maxi-
mum value obtained on these states. If minimum and max-
imum are equal, we consider (for visual reasons) the size
of the output interval to be the machine precision, that is
2−53 ≈ 10−16 for 64 bit floating-point precision. Since the
network gives an output in the interval [−1, 1], the logarithm
is mostly negative. We can see that the resolution of our ver-
sion (gray dotted line) is higher in 81 games and equal in
77 games to that of C − IL2P . In three games, the pre-
cision is lower which is a side-effect of our lowest-weight
approach in networks that consists of exactly one rule. In
these cases, however, we could set an arbitrary weight, since
our approach does not impose any constraints on the weight
of connections to the output neuron.

The 77 games with equal resolution are games where no
atomic part of the goal is affected by the first move. An ex-
ample is the game Checkers where the winner is determined
in terms of the number of pieces of both players. As it is
impossible to remove any stone in the first move, all states
are evaluated to the same value.

The logarithmic output size over all games increases in
average from−12.92 to−10.13, while for all games with an
output size bigger than machine precision it increases from
−9.91 to −4.38. Since both values are biased, we roughly
expect our algorithm to halve the logarithmic output size,
that is, increase the size of the output interval of a neuron to
the size of its square root.

Number of Distinct States The upper part of figure 5
shows the number of states that were evaluated to distinct
values. The x-axis is aligned with the lower figure and we
can see that in 41 of the cases with a higher resolution, also
a higher number of states with distinct state value was iden-
tified. Since our algorithm is correct, we can conclude that

in these 41 games our evaluation can now distinguish states
it could not distinguish before.

6 Summary
We have presented a generalization of C − IL2P algorithm
that correctly represents a set of propositional rules as neural
network. It structures the formerly monolithic transforma-
tion process of a propositional rule to a neuron into several
smaller parts and allows for potentially lower weights. This
proves advantageous when using the algorithm to create a
neural network that must correctly represent a domain the-
ory and at the same time be able to distinguish between sev-
eral input vectors. As an example we showed that the evalu-
ation function of a game-playing agent can correctly fuzzy-
evaluate and distinguish states for even complex games with
an increase in output resolution by several orders of magni-
tude. The main disadvantage of the algorithm is its higher
worst-case run-time requirements. However, for GGP these
aspects do not play a significant role due to the layered struc-
ture of propositionalized goal conditions. Moreover, the pro-
posed heuristic reduces the probability of a neuron parame-
ter recalculation.

6.1 Future Work
With the approach presented we can derive an evaluation
function for General Game Playing based on neural net-
works. If further enhanced with features, the evaluation
function should be able to compete with state-of-the-art sys-
tems, given that the typical problems of neural networks (no
initialization, low resolution) are addressed. Specifically, the
evaluation function should outperform in setups that allow
for learning since, unlike other agents, it builds on logic and
learning. Currently, however, such a setup is not part of the
GGP championship.

Neural networks also implicitly solve the feature weight-
ing problem: Equipped with a feature generation mech-
anism, features can be inserted in the network and after
enough training episodes the connection weights indicate the
utility of the feature. A feature with near-zero weights can
consequently be removed. Such a feature addition and sub-
traction mechanism combined with a reasonable evaluation
function would also allow for self-play and function evolu-
tion.

On the technical level, with parameter ∆ fixed to 1, the
chance to adapt the local ∆-values is not used for further
maximization of the output resolution. An interesting pos-
sibility is also to use first-order logic as domain theory as
considered in (Bader and Hitzler 2005).

References
Bader, S., and Hitzler, P. 2005. P.: Dimensions of neural-
symbolic integration - a structured survey. In We Will Show
Them: Essays in Honour of Dov Gabbay, 167–194. College
Publications.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In AAAI. Vancouver: AAAI Press.
d’Avila Garcez, A. B. K. B., and Gabbay, D. 2002. Neural-
Symbolic Learning Systems. Springer.



Figure 1: Above: Number of Distinct States Found; Below: Logarithmic Resolution of States

Finnsson, H., and Björnsson, Y. 2008. Simulation-based
approach to general game playing. In AAAI. AAAI Press.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2008. General game playing: Game de-
scription language specification. Technical Report March
4. The most recent version should be available at
http://games.stanford.edu/.
Michulke, D., and Thielscher, M. 2009. Neural networks for
state evaluation in general game playing. In ECML PKDD
’09: Proceedings of the European Conference on Machine
Learning and Knowledge Discovery in Databases, 95–110.
Berlin, Heidelberg: Springer-Verlag.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In Proceedings of the National
Conference on Artificial Intelligence, 1191–1196. Vancou-
ver: AAAI Press.
Towell, G. G.; Shavlik, J. W.; and Noordenier, M. O. 1990.
Refinement of approximate domain theories by knowledge
based neural network. volume 2, 861–866.


