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Abstract

Unlike traditional game playing, General Game Playing
(GGP) is concerned with agents capable of playing classes
of games. Given the rules of an unknown game, the agent is
supposed to play well without human intervention. For this
purpose, agent systems using game tree search need to auto-
matically construct a state value function to guide search.
This state value function is often either probabilistic as in
Monte-Carlo Systems and thus most likely unable to com-
pete with deterministic functions in games like chess; or it
is expensive in construction due to feature generation and
learning-based selection and weighting mechanisms.
In this work we present an alternative method that derives fea-
tures from the goal conditions stated in the game rules, avoid-
ing thereby the disadvantages of other approaches. The paper
structures and generalizes some known approaches, shows
new ways of deriving features and demonstrates how to use
these features as part of an evaluation function. Experiments
demonstrate both a high effectiveness and generality.

1 Introduction
In General Game Playing, agents are supposed to play
games they have never seen before. In a typical competi-
tion setup the agent receives the rules of a game and has a
few minutes time until the corresponding match starts. Since
the games are arbitrary deterministic games with complete
information (such as Chess, Go, Tic-Tac-Toe, Rock-Paper-
Scissors), the agent cannot rely on any preprogrammed be-
havior. Instead, it has to come up with a strategy that fits the
game.

An important aspect of this strategy is the state evaluation
function that evaluates states and is used to guide the agent
to states with a high value. There are two basic types of
evaluation functions:

Monte-Carlo based functions as used in (Finnsson and
Björnsson 2008) evaluate a state by performing playouts,
that is, playing random moves until a terminal state is
reached. After several of such playouts, the average of the
different match outcomes is considered the state value. The
problem is that this evaluation assumes a random opponent
behavior and stands no chance against informed and there-
fore non-random opponents in games with well-studied eval-
uation functions such as Chess. Extensions to the approach

such as (Finnsson and Björnsson 2010) moderate this effect,
but do not solve the problem.

The alternative is a deterministic evaluation based on the
state itself. To obtain such an evaluation function, agents
such as (Kuhlmann, Dresner, and Stone 2006; Clune 2007)
derive candidate features from expressions in the game de-
scription, evaluate them to obtain a measure of usefulness
for the game and finally put the features together, possibly
weighted, to form an evaluation function. While the ap-
proach is perfectly reasonable, the evaluation of candidate
features is usually time-consuming which is especially criti-
cal in a competition setup.

Another type of deterministic evaluation avoids this prob-
lem by using a function that is essentially a fuzzified version
of the goal condition as stated in the game rules (Schiffel
and Thielscher 2007; Michulke and Thielscher 2009). Af-
ter transforming the goal condition to a propositional fuzzy
evaluation function, it is improved by substituting specific
expressions by more expressive features. In contrast to the
feature detection and weighting approach, the features ap-
plied have a direct justification since they occur in the goal
condition. Also, they need no weights assigned as the fuzzy
goal condition provides the context for dealing with the fea-
ture output, i.e. weights them implicitly.

In this work we will present a generalized feature detec-
tion mechanism that builds on the latter two approaches. We
show how to detect and apply features for the use in such
an evaluation function. In contrast to other works published
until now, we focus on a clear algorithmic description of 1.
the construction process of the evaluation function and 2.
the use of the evaluation function. Note that in this paper
we do not intend to present a competitive GGP agent since
the topic of straightforward feature detection and weighting
is complex enough. Instead, we aim to present a general
technique of deriving an evaluation function from a given
domain theory. We believe the techniques presented should
be part of the repertoire of any non-probabilistic agent since
the resulting evaluation function represents a sound starting
point for state evaluation without the disadvantages related
to standard approaches for detecting, weighting and combin-
ing features.

The features discussed will cover the most important fea-
tures used in the cited sources, introduce some features not
yet used and, most importantly, show how to detect, confirm



and apply these features without a costly feature evaluation
and weighting phase. An evaluation will prove both gener-
ality and utility of the features.

The rest of this work is structured as follows: In the re-
mainder of this section we will briefly introduce GDL and
show in the next section how the goal condition of the
game can be used to construct a simple evaluation func-
tion using (propositional) t-norm fuzzy logics and ground-
instantiation. We proceed by introducing features in section
3 that we distinguish as expression features and fluent fea-
tures. We evaluate these features in section 4 and summarize
our results in section 5.

Game Description Language The language used for de-
scribing the rules of games in the area of General Game
Playing is the Game Description Language(Love et al. 2008)
(GDL). The GDL is an extension of Datalog with functions,
equality, some syntactical restrictions to preserve finiteness,
and some predefined keywords.

The following is a partial encoding of a Tic-Tac-Toe game
in GDL. In this paper we use Prolog syntax where words
starting with uppercase letters stand for variables and the
remaining words are constants.

1 role(xplayer). role(oplayer).
2 init(cell(1,1,b)). init(cell(1,2,b)).
3 init(cell(2,3,b)). ... init(cell(3,3,b)).
4 init(control(xplayer)).
5 legal(P, mark(X, Y)) :-
6 true(control(P)), true(cell(X, Y, b)).
7 legal(P,noop) :- role(P),not true(control(P)).
8 next(cell(X,Y,x)) :- does(xplayer,mark(X,Y)).
9 next(cell(X,Y,o)) :- does(oplayer,mark(X,Y)).

10 next(cell(X,Y,C)) :-
11 true(cell(X,Y,C)), C \= b.
12 next(cell(X,Y,b)) :- true(cell(X,Y,b)),
13 does(P, mark(M, N)), (X \= M ; Y \= N).
14 goal(xplayer, 100) :- line(x).
15 ...
16 terminal :- line(x) ; line(o) ; not open.
17 line(P) :- true(cell(X, 1, P)),
18 true(cell(X, 2, P)), true(cell(X, 3, P)).
19 ...
20 open :- true(cell(X, Y, b)).

The first line declares the roles of the game. The unary pred-
icate init defines the properties that are true in the initial
state. Lines 5-7 define the legal moves of the game, e.g.,
mark(X,Y) is a legal move for role P if control(P) is
true in the current state (i.e., it’s P’s turn) and the cell X,Y
is blank (cell(X,Y,b)). The rules for predicate next
define the properties that hold in the successor state, e.g.,
cell(M,N,x) holds if xplayer marked the cell M,N
and cell(M,N,b) does not change if some cell different
from M,N was marked. Lines 14 to 16 define the rewards of
the players and the condition for terminal states. The rules
for both contain auxiliary predicates line(P) and open
which encode the concept of a line-of-three and the exis-
tence of a blank cell, respectively.

We will refer to the arguments of the GDL keywords
init, true and next as fluents. In the above example,
there are two different types of fluents, control(X) with X

∈ {xplayer, oplayer} and cell(X, Y, C) with X, Y
∈ {1, 2, 3} and C ∈ {b, x, o}. Any subset of the set
of these fluents constitutes a state s. By applying the next
rules on the current state s and the set of terms does(P, A)
for each role P and its selected action A, one can derive the
successor state s′ of s.

2 The Evaluation Function
The evaluation function takes as argument a state and re-
turns a value that indicates the degree of preference of the
state. The function is used to find the best among different
actions by deriving the successor state(s) induced by that
action, evaluating them and selecting the action that leads to
the best-valued successor state(s).

Since in General Game Playing each game is different,
there is no generally useful evaluation function and an agent
has to construct a function automatically depending on the
game. One possibility is to take the game’s goal function
that maps states to a goal value. However, since goal func-
tion in GDL is “crisp”, it does not contain information to
what extent a state fulfills the underlying goal condition.
Moreover, it most often only distinguishes between termi-
nal states. By fuzzifying the goal function both problems
can be addressed.

Construction After receiving the rules we preprocess the
goal conditions of the game to obtain an evaluation function.
Since each goal condition describes an existentially quanti-
fied predicate logic expression, our algorithm operates on
these expressions. The following expansion algorithm takes
as first argument an existentially quantified expression and
transforms it recursively into a tree-like structure that repre-
sent the evaluation function:

1 expand(true(Fluent), true(Fluent)) :- !.
2 expand(not(Expr), not(Child)) :- !,
3 expand(Expr, Child).
4 expand(Expr, and(Children)) :-
5 is_conjunction(Expr, Conjuncts), !,
6 expand_children(Conjuncts, Children).
7 expand(Expr, or(Children)) :-
8 is_disjunction(Expr, Disjuncts), !,
9 expand_children(Disjuncts, Children).

10 expand(Expr, R) :-
11 is_game_specific_pred(Expr, Expansions), !,
12 (Expansions = [OneExpansion] ->
13 expand(OneExpansion, R)
14 ;
15 R = or(Children)
16 expand_children(Expansions, Children)
17 ).
18 expand(Expr, reason(Expr)).
19 expand_children([], []).
20 expand_children([C|Children], [E|Expansions]) :-
21 expand(C, E),
22 expand_children(Children, Expansions).

The predicates is_conjunction/2,
is_disjunction/2 and is_game_specific_pred/2
analyze whether the expression is what the predicate
expects it to be and returns, if confirmed, as sec-
ond argument a list of the constituting expressions.



So given Expr=(a(b), c(X), d) it would hold
is_conjunction(Expr, [a(b), c(X), d]) while
is_disjunction(Expr, Conjuncts) would fail since
Expr is not a disjunction.

Obviously, the algorithm needs a little more to
work the intended way. For instance, the predicate
is_conjunction/2 must not split conjunctions where
the conjuncts share variables. So an expression like
is_conjunction((a(X), b(X), c(Y)), Conjuncts)
should yield a list of two conjuncts, namely (a(X), b(X))
and c(Y). Consequently, the expression (a(X), b(X))
is not seen as a conjunction by our algorithm, but rather
as an expression that will be delegated to the reasoner.
Also we must not expand recursive expressions in
is_game_specific_pred/2.

In the case of Tic-Tac-Toe, we could e.g. pass the ex-
pression goal(xplayer, 100) as first argument to the
expand algorithm and receive a structure that represents the
fuzzified evaluation of whether a given state fulfills the win-
ning condition for role xplayer. We will refer to such a
structure as evaluation tree.

State Evaluation The following is an example how to use
this evaluation tree to obtain a single value that represents a
propositional fuzzy evaluation of the goal condition applied
on the state. The evaluation tree is passed as first argument
and the state we want to evaluate as second argument. As
last argument we receive the fuzzy value. All predicates with
the prefix fz_ and the predicates true/1 and false/1 are
defined along with the fuzzy logic in the next section.

1 eval(not(Child), S, V) :-
2 eval(Child, S, V1), not(V1, V).
3 eval(true(Fluent), S, V) :-
4 fluent_holds(Fluent, S),
5 !, fz_true(V).
6 eval(true(_Fluent), _, V) :- fz_false(V).
7 eval(and([]), _, V) :- !, true(V).
8 eval(and([C|Children]), S, V) :-
9 eval(C, S, V1),

10 eval(and(Children), S, V2),
11 fz_and(V1, V2, V).
12 eval(or([]), _, V) :- !, false(V).
13 eval(or([C|Children]), S, V) :-
14 eval(C, S, V1),
15 eval(or(Children), S, V2),
16 fz_or(V1, V2, V).
17 eval(reason(Expr), S, V) :-
18 expression_holds(Expr, S),
19 !, fz_true(V).
20 eval(reason(_Expr), _, V) :- fz_false(V).

Here we evaluate all leafs of the evaluation function struc-
ture (fluents and expressions) to the value defined by
fz_true if they hold in the current state and to the
fz_false value otherwise. These values are passed re-
cursively up the evaluation structure using the predicates
fz_and, fz_or and not and the value at the root node
represents the fuzzy evaluation of the goal condition on the
state. The predicates true and false just represent the up-
per and lower bound of the interval of truth values and must
be set in accordance with the fuzzy logic.

Underlying Fuzzy Logic A useful propositional fuzzy
logic could be any t-norm fuzzy logic, e.g.:

1 fz_true(0.9). true(1).
2 fz_false(0.1). false(0).
3 not(X, Y) :- Y is 1 - X.
4 fz_and(X, Y, Z) :- Z is Y * X.
5 fz_or(X, Y, Z) :- Z is X + Y - X * Y.

Fluxplayer (Schiffel and Thielscher 2007) also operates on
the interval [0, 1] of truth values, but uses an instance of the
Yager family of t-norms.

We believe that the class of applicable fuzzy logics can be
extended to more general classes than just t-norm fuzzy log-
ics. In fact, for the GGP setting any “approximately correct”
logic can be used since we will discuss features that return
incorrect values with respect to the used fuzzy semantic, yet
these features contribute well to the evaluation quality of a
state. For the remainder of this paper we assume the t-norm
fuzzy logic as given above.

Given the expansion and evaluation algorithms together
with an appropriate propositional fuzzy logic, we can eval-
uate the degree of truth of the goal condition on a particular
state. Practically, we obtain a measure to compare two states
by comparing their state values and we can assume that the
state with the higher state value is closer to the goal than the
other state. Note however, the evaluation function up to now
builds merely upon the logical structure of the goal expres-
sion. Distances or quantitative evaluations are ignored.

Ground-Instantiation Since the domains of all variables
occurring in a game description are finite, it is possible to
ground-instantiate a game by substituting any expression
containing a variable with the disjunction of the expressions
where that variable is substituted by all terms in the domain
of the variable. We use ground-instantiation to deal with ex-
pressions that cannot be expanded further. In this way, it is
e.g. possible to break down variable-sharing conjunctions
to a disjunction of standard conjunctions and thus increase
the part of the original predicate logic expression that can be
evaluated using fuzzy logic. Note, however, that the number
of ground-instantiations of an expression may grow expo-
nentially with the number of variables. It is therefore some-
times necessary to use a mixed approach, instantiating some
variables while leaving others uninstantiated. Expressions
uninstantiated for whatever reason are directly evaluated by
the reasoner.

After ground-instantiating an expression we may en-
counter (so called static) predicates in the resulting ground
expressions that do not depend on the current state of the
game. We can immediately evaluate them to true or false and
hence do not need to include them in the evaluation function.

Our basic principle for constructing the evaluation tree is
to keep all expressions uninstantiated for as long as possible
to avoid growing the size of the evaluation function.

3 Features
We will present several features and show how to detect
them in a predicate logic expression. This will require us
to modify the expand algorithm given above. Due to space



restrictions we cannot give a formal description of the re-
quirements an expression needs to fulfill in order to be iden-
tified as a feature. However, we will discuss them informally
in the corresponding paragraph. For each feature discussed
we will give an example on how to utilize it by presenting
additional rules for the above eval algorithm.

The features themselves represent heuristics and there are
always situations in which the features produce the oppo-
site of what a perfect state evaluation function would return.
However, this problem is a general problem of game playing
agents. It is addressed by using only features that predom-
inantly improve the evaluation quality and by using many
features such that over- and underestimations of feature val-
ues neutralize themselves.

3.1 Expression Features
We start with expression features that are derived from ex-
pressions containing variables, namely fluents with vari-
ables, conjunctions of conjuncts that share variables, and
predicates containing variables. For the detection of expres-
sion features we specialize the expand algorithm such that
instead of further expansion via ground-instantiation or sim-
ple delegation to the reasoner, we interpret the expression
directly as feature, and add this feature as leaf to the eval-
uation tree. This has two main effects: First, by avoiding
ground-instantiation the number of nodes in the evaluation
tree is smaller and the function therefore faster to evaluate.
And second, the resulting feature is more expressive than its
otherwise expanded alternative.

In other words, evaluation becomes faster and estimates
better at the same time.

Solution Cardinality

1 open :- true(cell(X, Y, b)).

The basic element for querying the current state of the
match is the true statement with a fluent as argument. Since
we apply ground-instantiation as late as possible, we may
encounter fluents with non-ground arguments. An example
is the above rule from the game Tic-Tac-Toe. The open/0
predicate is used to determine whether there are blank cells
and whether the match can therefore continue.

We impose a first interpretation on the body of the rule
by counting the number of solutions in the expression. So
instead of evaluating the expression to true or false, we
evaluate it to false if there are no solutions, but give it
a higher value for the more solutions there are. Assum-
ing that states are relatively stable and the set of true flu-
ents does not change radically from one state to another, a
higher solution cardinality indicates that the expression is
more likely to be true in successor states of the state un-
der inspection. Besides, the evaluation function is smaller
than its ground-instantiated variant (one node instead of 9
in the case of Tic-Tac-Toe) and the evaluation is therefore
also faster than a nine-fold query of each individual ground
fluent cell(1, 1, b), ... cell(3, 3, b).

To use the feature, we change the
eval(true(Fluent), S, V) rule in our evaluation

function such that it is equal to the value of a standard
disjunction of the ground fluents.

For the open/0 example, the evaluation would look like:

1 eval(true(cell(X, Y, b)), S, V) :-
2 count_solutions(cell(X, Y, b), S, SolCnt),
3 count_instances(cell(X, Y, b), Inst),
4 fz_generalized_or(SolCnt, Inst, V).

count_instances/2 returns the number of valid
instances for first argument (in this case 9) and
fz_generalized_or/3 is a helper that calculates
the fuzzy value of a disjunction that is Inst-SolCnt times
false and SolCnt times true.

We apply this interpretation whenever we encounter flu-
ents with variables or expressions that we would otherwise
pass to the reasoner. This feature is the same as the one
Clune proposed(Clune 2007) under the same name. In his
approach, however, solution cardinality features were con-
structed by first considering all expressions as solution car-
dinality features, then evaluating specific feature properties
(stability, correlation to goal values and computation cost)
on a number of test states and finally removing all candidate
features that do not exhibit the desired properties to a suffi-
cient degree. In contrast, our approach is much faster since
the set of candidate features is greatly reduced and the cor-
relation to goal values is implicitly determined through the
context the fuzzy logic provides.

Order Conjunctions with shared variables adhere to a
number of patterns. One example is a goal expression in
the game Checkers which states

1 goal(white, 100) :-
2 true(piece_count(white, W)),
3 true(piece_count(black, B)),
4 greater(W, B).

The piece_count fluent keeps track of the number of
pieces each role has and greater is the axiomatized variant
of the greater-than relation. Thus white achieves 100 points
if it has more pieces than black.

Since domains typically have no more than a few
hundred elements, we can quickly prove that the rela-
tion expressed by the predicate greater/2 is antisym-
metric, functional, injective and transitive and thus con-
clude that it represents a total order, possibly with the
exception of the reflexive case. Therefore, we can
map all elements in the order to natural numbers. As-
suming that the fluents piece_count(white, _) and
piece_count(black, _) occur exactly once in each
state, we can identify an expression of the above type as or-
der expression. Generally spoken, we identify an expression
as order feature if we encounter a conjunction with sharing
variables where at least one fluent variable occurs in a static
predicate that represents a total order. In addition we require
the fluents in the conjunction to occur exactly once in any
state.

We evaluate the above example the following way:

1 eval(order(goal(white, 100)), S, V) :-
2 fluent_holds(piece_count(white, W), S),



3 fluent_holds(piece_count(black, B), S),
4 term_to_int(greater_2, W, WI),
5 term_to_int(greater_2, B, BI),
6 domain_size(greater_2, Size),
7 V is 0.5 + (WI-BI)/(2*Size).

The advantage of this type of order heuristics is most impor-
tantly a finer granularity in comparisons of elements: The
return value V is higher for higher differences between the
terms W and B and lower if both are approximately equal. A
ground-instantiated version of this evaluation would not be
able to distinguish between differences of +2 or +20. Be-
sides, we reduce the size of the evaluation function by avoid-
ing ground-instantiation. In this case, since there are 13 pos-
sible values of the piece_count fluent (0 to 12 pieces) for
each role, we express 169 ground evaluations by one heuris-
tic order expression.

The only disadvantage is that we do not see an easy way
to express this relation while sticking to the truth values re-
quired by our fuzzy logic, thus we lose correctness at this
point.

A structurally different feature with the same expressive-
ness is also detected by (Clune 2007) who looks for compar-
ative features if solution cardinalities are found. However,
it is unclear if his agent is able to exploit orders on other
quantitative statements. Our approach is similar to that of
(Schiffel and Thielscher 2007).

Relative Distances I - Distance Between Fluents An-
other pattern for conjunctions with shared variables is that
of the relative distance. If two fluents occur in a conjunction
and share the same variables at the same argument positions
then these are candidates for relative distances. An example
is the winning rule for inky in the game Pac-Man (“pac-
man3p”):

1 goal(inky, 100) :-
2 true(location(pacman, X, Y)),
3 true(location(inky, X, Y))).

In order to confirm that this pattern can be interpreted as
relative distance pattern, we have to make sure that it is pos-
sible to calculate distances on the argument positions of the
fluent where the variables occur. We do this by identifying,
how the arguments of the fluent evolve over time. If, for
instance, the fluent location/3 represents a metric board
where Pac-Man can move north, then there is most probably
a rule in the GDL description of the game such that

1 next(location(pacman, X, Z)) :-
2 true(location(pacman, X, Y)),
3 a_predicate(Y, Z).

By identifying static predicates such as a_predicate/2,
one can derive a graph where all valid instantiations of
a_predicate/2 are the edges.

Most often, the relation represented by a_predicate/2
is an antisymmetric, functional, injective and irreflexive and
hence the domain a successor domain. The transitive clo-
sure of this domain can then be represented by natural num-
bers and distances easily calculated. Much like the in order

heuristics, a relative distance interpretation of the above ex-
ample could look like this:

1 eval(relative_dist(goal(inky, 100)), S, V) :-
2 fluent_holds(location(pacman, XP, YP), S),
3 fluent_holds(location(inky, XI, YI), S),
4 term_to_int(location_3_arg_2, XP, XPI),
5 term_to_int(location_3_arg_2, XI, XII),
6 domain_size(location_3_arg_2, XSize),
7 XDist is abs(XPI-XII)/XSize,
8 term_to_int(location_3_arg_3, YP, YPI),
9 term_to_int(location_3_arg_3, YI, YII),

10 domain_size(location_3_arg_3, YSize),
11 YDist is abs(YPI-YII)/YSize,
12 metric(XDist, YDist, Dist),
13 V is 1-Dist.

Basically, we evaluate the distances per argument, com-
bine these using a metric and give a higher return for lower
distances.

There are also predicates that do not represent a functional
or injective relation. In this case we cannot construct a map-
ping of the domain elements of the binary static predicate to
the natural numbers. To use the predicate information any-
way, we construct a graph where all relations given by the
predicate are considered edges of the graph. The shortest
path in the graph between two arbitrary domain elements
represents the distance. If there is no path, then we con-
sider the distance infinite. Instead of using the domain size
to normalize the distance, we then have to use the longest of
all shortest distances between any two domain elements.

Note that we may also detect information regarding the
direction: The relation expressed by a_predicate(Y, Z)
represents, in fact, a directed edge from Y to Z, assuming
that Z occurs in the fluent in the head of the next rule and Y
in the body. This means that in the above evaluation lines 7
and 11 are only right if Pac-Man and Inky can move north
and south. In case, they can only move in one direction, the
distance is either infinite or the absolute of the determined
relative distance.

Finally, the above evaluation only works if the fluents
containing variables unify with exactly one instance in each
state. In case there is no such fluent in the state, the distance
is infinite and the result therefore V = 0. If there are more
instances, we can calculate the pairwise relative distances
and aggregate them using the average or the minimum.

The advantage of this feature are again a reduction of the
size of the evaluation tree and a much greater expressive-
ness: Both the uninstantiated and the ground-instantiated
version of e.g. the goal in Pac-Man return a constant value
and thus provides no feedback in cases where Pac-Man and
Inky are not on the same square. Only a relative distance
evaluation returns useful fuzzy values in this case.

Though theoretically feasible in other approaches, dis-
tances between variable fluents were mentioned directly
only in (Kuhlmann, Dresner, and Stone 2006) where it is
used as a candidate feature. However, it remains unclear
when he chooses to use the feature and how he uses the fea-
ture output in the evaluation function. In contrast, both is
taken care of in our approach since we derive it from a spec-
ified expression and integrate its output via fuzzy logic.



3.2 Fluent Features
Another type of features that we identify are fluent fea-
tures. This type of feature is derived from fluents and mod-
ifies an existing true(Fluent) expression: The standard
fluent_holds/2 evaluation is substituted by a more com-
plicated procedure, rendering the evaluation typically more
expensive but also more fine-grained.

Relative Distances II - Distance To Fixed Fluents A
specialization of the relative distance between two fluents
is the relative distance towards a fixed point. In this pat-
tern we do not find two fluents with shared variables but a
single fluent without variables. The predicate timeout/0
is part of the goal condition of a version of MummyMaze
(“mummymaze2p-comp2007”):

1 timeout :- true(step(50)).

The step fluent argument is increased via a static successor
predicate that we identify as described in Relative Distances
I. Hence the evaluation in this case is just a simplified ver-
sion of the evaluation for relative distances between fluents.
Another example could be a modified Pac-Man where Pac-
Man has to reach a specific coordinate to win the match, e.g.

1 goal(pacman, 100) :-
2 true(location(pacman, 8, 8)).

In fact, we can generalize this pattern to all fluents, such
that for every fluent that is evaluated by fluent_holds/2
we may try to determine whether we find an order over some
of its arguments. If confirmed, we use distance estimation on
the fluent. The strength of the distance estimation lies in the
fact that although only location(pacman, 8, 8) occurs
as goal in the goal condition, we can derive useful infor-
mation from arbitrary fluents location(pacman, X, Y)
holding in the current state. The evaluation is based on the
hypothesis that fluents where X ≈ 8 and Y ≈ 8 are more
likely to lead to the desired goal fluent.

Since ground fluents occur frequently in virtually every
goal condition, we must however be aware of side effects.
While relative distances in Tic-Tac-Toe pose no problem as
the cell coordinates are not connected via binary successor
predicates, the situation is different in a Connect Four vari-
ant where the following next rule connects vertically adja-
cent cells:

1 next(cell(X, Y2, red)) :-
2 does(red, drop(X),
3 cell(X, Y2, blank),
4 succ(Y1, Y2),
5 cell(X, Y1, red).

The correct interpretation of the rule states that if a cell is
occupied by red, the above cell can be occupied by red as
well. However, the distance interpretation may see player
red move from cell (X, Y1) to cell (X, Y2) just as Pac-Man
does. The difference by which we can distinguish both in-
terpretations lies in the fact that in Connect Four all reach-
able ground fluents of the form cell(X, Y, red) occur in
the goal condition (as part of the definition of a line of four
discs), while in a game with a distant goal there are only a

few fluents that represent the goal, most do not occur in the
goal condition.

A second problem arises for fluents with variables. In the
example of Pawn Whopping (“pawn whopping”) the player
wins if one of his pawns (symbolized by an x) reaches any
cell (variable Y) of the 8th rank, symbolized by the 8.

1 goal(x, 100) :- true(cell(Y, 8, x)).

Again, we find there are static successor predicates that im-
pose an order over the first two arguments of the fluent, en-
abling us to calculate distances. However, here we have a
conflict between features, as the expression could be evalu-
ated using the solution cardinality interpretation and the dis-
tance interpretation. Of course, only distance interpretation
makes sense since the goal is to have a pawn at the 8th rank
and the match ends once the goal is achieved. A solution
cardinality of 2 will thus never occur.

We distinguish both patterns generally by applying the so-
lution cardinality only if all ordered arguments (that is, ar-
guments of the fluent where an underlying order could be
found) of the fluent are variables since such an expression
typically counts the number of pieces on a board. In all other
situations we use the distance interpretation.

Persistence Another detail for improving the evaluation of
ground-instantiated fluents is their persistence. Consider the
following example from Tic-Tac-Toe:

1 next(cell(X, Y, C)) :-
2 true(cell(X, Y, C)), C \= b.

The rule states that once a cell is marked (with an x or an
o), the cell remains marked for the rest of the match. We
call this fluent feature “persistence” as the fact encoded by
the fluent persists through the rest of the match. We dis-
tinguish between persistent true and persistent false fluents:
Once a persistent true fluent holds, it holds in all successor
states. In contrast, if a persistent false fluent does not hold
in the current state, then it also does not hold in its succes-
sor states. An example for a persistent false fluent is the flu-
ent cell(X, Y, b) representing unmarked (blank) cells in
Tic-Tac-Toe.

Persistence can be used in several ways to improve the
evaluation function: First, persistent fluents have a higher
impact on a future state than non-persistent fluents. Hence,
a higher evaluation is justified.

1 eval(true(Fluent), S, V) :-
2 fluent_holds(Fluent, S), !,
3 (persistent_true(Fluent) -> true(V);
4 fz_true(V)).
5 eval(true(Fluent), _, V) :-
6 (persistent_false(Fluent) -> false(V);
7 fz_false(V)).

Beside persistent fluents being more stable than their non-
persistent counterparts, persistence can also speed up the
evaluation of a state: Once a persistent false fluent holds, any
conjunction with this fluent as positive (i.e. non-negated)
conjunct is also persistent false. Therefore, we can skip eval-
uating other conjuncts in the same conjunction. This same



effect holds for negative occurrences of persistent true flu-
ents.

Therefore we modify the evaluation function as follows:

1 eval(and([]), S, V) :- true(V).
2 eval(and([C|Children], S, V) :-
3 eval(C, S, V1),
4 (false(V1) ->
5 V = 0
6 ;
7 eval(and(Children), S, V2),
8 fz_and(V1, V2, V)
9 ).

Naturally the idea is analogously applicable for persistent
true fluents in disjunctions.

Note that distance estimations that return an infinite dis-
tance are also persistent false fluents. For proving that
fluents are persistent we use the approach presented in
(Thielscher and Voigt 2010).

4 Evaluation
We evaluate the effectiveness of each feature proposed by
applying them in a number of games. Our hypothesis is
that they increase the probability of winning against a bench-
mark player at least in some games. As candidate games we
used only games played in the GGP championships 2005-
2009. The players had a 60 seconds preparation time and 10
seconds for each move. After half of the matches, roles were
switched (e.g. the party playing black plays white and vice
versa) to eliminate advantages of specific roles. Both agents
use the same search algorithm (α-β search).

As evaluation function we use a neural network that cor-
rectly represents propositional logic and presents similar
fuzzy properties as e.g. t-norm fuzzy logic (Michulke and
Thielscher 2009). We further limited the evaluation func-
tion structure to depth 8 and size 500 to cut off the most
disadvantageous parts of the function. The rationale behind
is that nodes in depths higher than 8 have little impact on
the state evaluation, but are still expensive to evaluate. For
the same reason we skip the expansion of expressions if the
resulting function would surpass 500 nodes. The values of
the limits were determined empirically and ensure a reason-
able evaluation speed of several hundred states per second.
Any remaining unexpanded expression was delegated to the
reasoner.

The evaluation was performed by setting up a player
against a handicapped version of itself. The handicap was
realized by deactivating one of the features discussed in this
paper. Both players ran on the same machine, a Core 2 Duo
E 8500 at 3.16GHz with 4GB RAM, each player had 1.5GB
RAM to its avail.

The left chart of Figure 1 shows the results of 40 matches
in the given games. The capital letters indicate what feature
was turned off at the handicapped player and refer to the ex-
pression features solution cardinality (SC), order (Ord) and
distance between fluents (DistBtw), and the fluent features
distance towards a fixed fluent based on natural numbers
(ND) or graphs (GD), and persistence (Pers). The length of
the bar shows to what extent the win rate was shifted in favor

Figure 1: Left: Win Rate Increase against Handicapped
Player, Right: #Features Detected in 198 Games

of the standard player when playing against the handicapped
version. E.g. a value of 20% means that instead of winning
50% of all won points in the matches, the standard version
now wins 60%. Consequently, the handicapped version just
won 40 %.

For comparison, the chance of flipping 40 ideal coins and
getting 26 times or more heads is 4.06%. So there is 4.06%
chance that a win rate increase of 26/20 − 1 = 30% is a
mere coincidence and both agents play equally well.

We can see that in most of the games the win rate in-
creases against the handicapped agent. The decreasing per-
formance in the worst three games is distance related and
has a simple reason: Depending on the type of search, dis-
tance information can be obtained otherwise. If e.g. our
evaluation function has no distance information in Pac-Man,
then all states are evaluated equal. Our architecture therefore
uses the maximum of all values reachable within the search
horizon to tie-break the situation. This means that once a
goal state is found (even though it would require the oppo-
nent to play in our favor) the state evaluation tends towards
this state. Therefore in games of limited complexity this
tie-breaking mechanism in combination with the additional
computational effort to calculate the distance is responsible
for the underperformance. This argument is supported by
the fact that in more complex games distance actually does
make a difference.

The right side of Figure 1 shows in how many games fea-
tures of the given type appear. ExprSC and FluentSC here
distinguish between solution cardinality applied to expres-
sions passed to the reasoner and those applied to fluents
with variables1. We can see that there were 17 games were
no feature was found. Among these are four Tic-Tac-Toe
variants where persistence could not be proved within the
given amount of time. All other games without features had
ground goals (e.g. four Nim versions and four Blocksworld
versions). Note that in these cases our fuzzy logic itself al-
ready provides good search guidance.

5 Summary
We presented a general and integrated method of how to
transform a predicate logic expression to an evaluation func-

1The complete set of games can be found under
http://euklid.inf.tu-dresden.de:8180/ggpserver



tion. We focused on detecting features in the expression, de-
scribing other conditions that must be met to use the features
and proposing a number of short algorithms that show how
to use the feature information. In contrast to other general
game players, no expensive feature evaluation phase was
needed.

We showed the benefits of applying such features on a set
of specific games and measured, how general the features
are on a set of 198 games submitted to the Dresden GGP
server up to January 2011.

For the future, we consider it crucial to also measure the
effects of the features on run-time and decide, depending
on the complexity of the game, whether the feature is ad-
vantageous or not. Besides, we believe that an architecture
that dynamically decides what interpretation to use is maybe
suited best for the different interpretations. An idea in this
scenario would be to see first whether a fluent or an expres-
sion holds. If it holds, return a value representing how often
it holds and how stable (i.e. persistent) it is. If it doesn’t,
evaluate a fluent using distances and an expression using
partial evaluation based on e.g. how many conjuncts of the
expression hold. Finally, there is no reason to assume that
distances cannot be calculated on the arguments of predi-
cates, leaving space for further improvement.
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