
Distance Features for General Game Playing

Daniel Michulke
Department of Computer Science
Dresden University of Technology

daniel.michulke@mailbox.tu-dresden.de

Stephan Schiffel
School of Computer Science

Reykjavı́k University
stephans@ru.is

Abstract

General Game Playing (GGP) is concerned with the develop-
ment of programs that are able to play previously unknown
games well. The main problem such a player is faced with
is to come up with a good heuristic evaluation function auto-
matically. Part of these heuristics are distance measures used
to estimate, e.g., the distance of a pawn towards the promo-
tion rank. However, current distance heuristics in GGP are
based on too specific detection patterns as well as expensive
internal simulations, they are limited to the scope of totally
ordered domains and/or they apply a uniform Manhattan dis-
tance heuristics regardless of the move pattern of the object
involved.
In this paper we describe a method to automatically con-
struct distance measures by analyzing the game rules. The
presented method is an improvement to all previously pre-
sented distance estimation methods, because it is not limited
to specific structures, such as, game boards. Furthermore, the
constructed distance measures are admissible.
We demonstrate how to use the distance measures in an eval-
uation function of a general game player and show the effec-
tiveness of our approach by comparing with a state-of-the-art
player.

1 Introduction
While in classical game playing, human experts encode their
knowledge into features and parameters of evaluation func-
tions (e.g., weights), the goal of General Game Playing is
to develop programs that are able to autonomously derive a
good evaluation function for a game given only the rules of
the game. Because the games are unknown beforehand, the
main problem lies in the detection and construction of useful
features and heuristics for guiding search in the match.

One class of such features are distance features used in
a variety of GGP agents (e.g., (Kuhlmann, Dresner, and
Stone 2006; Schiffel and Thielscher 2007; Clune 2007;
Kaiser 2007)). The way of detecting and constructing fea-
tures in current game playing systems, however, suffers from
a variety of disadvantages:

• Distance features require a prior recognition of board-like
game elements. Current approaches formulate hypotheses
about which element of the game rules describes a board
and then either check these hypotheses in internal simu-
lations of the game (e.g., (Kuhlmann, Dresner, and Stone

2006; Schiffel and Thielscher 2007; Kaiser 2007)) or try
to prove them (Schiffel and Thielscher 2009a). Both ap-
proaches are expensive and can only detect boards if their
description follows a certain syntactic pattern.

• Distance features are limited to board-like structures, that
is, n-dimensional structures with totally ordered coordi-
nates. Distances over general graphs are not considered.

• Distances are calculated using a predefined metric on the
boards. Consequently, distance values obtained do not de-
pend on the type of piece involved. For example, using a
predefined metric the distance of a rook, king and pawn
from a2 to c2 would appear equal while a human would
identify the distance as 1, 2 and∞ (unreachable), respec-
tively.

In this paper we will present a more general approach
for the construction of distance features for general games.
The underlying idea is to analyze the rules of game in order
to find dependencies between the fluents of the game, i.e.,
between the atomic properties of the game states. Based
on these dependencies, we define a distance function that
computes an admissible estimate for the number of steps re-
quired to make a certain fluent true. This distance function
can be used as a feature in search heuristics of GGP agents.
In contrast to previous approaches, our approach does not
depend on syntactic patterns and involves no internal simu-
lation or detection of any predefined game elements. More-
over, it is not limited to board-like structures but can be used
for every fluent of a game.

The remainder of this paper is structured as follows: In
the next section we give an introduction to the Game De-
scription Language (GDL), which is used to describe gen-
eral games. Furthermore, we briefly present the methods
currently applied for distance feature detection and distance
estimation in the field of General Game Playing. In Sec-
tion 3 we introduce the theoretical basis for this work, so
called fluent graphs, and show how to use them to derive
distances from states to fluents. We proceed in Section 4 by
showing how fluent graphs can be constructed from a game
description and demonstrate their application in Section 5.
Finally, we conduct experiments in Section 6 to show the
benefit and generality of our approach and discuss and sum-
marize the results in Section 9.



2 Preliminaries
The language used for describing the rules of general games
is the Game Description Language (Love et al. 2008)
(GDL). GDL is an extension of Datalog with functions,
equality, some syntactical restrictions to preserve finiteness,
and some predefined keywords.

The following is a partial encoding of a Tic-Tac-Toe game
in GDL. In this paper we use Prolog syntax where words
starting with upper-case letters stand for variables and the
remaining words are constants.

1 role(xplayer). role(oplayer).
2

3 init(cell(1,1,b)). init(cell(1,2,b)).
4 init(cell(1,3,b)). ...
5 init(cell(1,3,b)). init(control(xplayer)).
6

7 legal(P, mark(X, Y)) :-
8 true(control(P)), true(cell(X, Y, b)).
9 legal(P,noop) :-

10 role(P), not true(control(P)).
11

12 next(cell(X,Y,x)) :- does(xplayer,mark(X,Y)).
13 next(cell(X,Y,o)) :- does(oplayer,mark(X,Y)).
14 next(cell(X,Y,C)) :-
15 true(cell(X,Y,C)), distinct(C, b).
16 next(cell(X,Y,b)) :- true(cell(X,Y,b)),
17 does(P, mark(M, N)),
18 (distinct(X, M) ; distinct(Y, N)).
19

20 goal(xplayer, 100) :- line(x).
21 ...
22 terminal :- line(x) ; line(o) ; not open.
23

24 line(P) :- true(cell(X, 1, P)),
25 true(cell(X, 2, P)), true(cell(X, 3, P)).
26 ...
27 open :- true(cell(X, Y, b)).

The first line declares the roles of the game. The unary
predicate init defines the properties that are true in the
initial state. Lines 7-10 define the legal moves of the
game with the help of the keyword legal. For example,
mark(X,Y) is a legal move for role P if control(P) is
true in the current state (i.e., it’s P’s turn) and the cell X,Y
is blank (cell(X,Y,b)). The rules for predicate next
define the properties that hold in the successor state, e.g.,
cell(M,N,x) holds if xplayer marked the cell M,N and
cell(M,N,b) does not change if some cell different from
M,N was marked1. Lines 20 to 22 define the rewards of the
players and the condition for terminal states. The rules for
both contain auxiliary predicates line(P) and open which
encode the concept of a line-of-three and the existence of a
blank cell, respectively.

We will refer to the arguments of the GDL keywords
init, true and next as fluents. In the above example,
there are two different types of fluents, control(X) with X
∈ {xplayer, oplayer} and cell(X, Y, Z) with X, Y
∈ {1, 2, 3} and Z ∈ {b, x, o}.

1The special predicate distinct(X,Y) holds if the terms X
and Y are syntactically different.

In (Schiffel and Thielscher 2009b), we defined a formal
semantics of a game described in GDL as a state transition
system:
Definition 1 (Game). Let Σ be a set of ground terms and
2Σ denote the set of finite subsets of Σ. A game over
this set of ground terms Σ is a state transition system
Γ = (R, s0, T, l, u, g) over sets of states S ⊆ 2Σ and ac-
tions A ⊆ Σ with
• R ⊆ Σ, a finite set of roles;
• s0 ∈ S, the initial state of the game;
• T ⊆ S, the set of terminal states;
• l : R×A× S, the legality relation;
• u : (R 7→ A)×S → S , the transition or update function;

and
• g : R× S 7→ N, the reward or goal function.

This formal semantics is based on a set of ground terms
Σ. This set is the set of all ground terms over the signature
of the game description. Hence, fluents, actions and roles
of the game are ground terms in Σ. States are finite sets of
fluents, i.e., finite subsets of Σ. The connection between a
game description D and the game Γ it describes is estab-
lished using the standard model of the logic program D. For
example, the update function u is defined as

u(A, s) = {f ∈ Σ : D ∪ strue ∪Adoes |= next(f)}

where strue and Adoes are suitable encodings of the state
s and the joint action A of all players as a logic program.
Thus, the successor state u(A, s) is the set of all ground
terms (fluents) f such that next(f) is entailed by the game
descriptionD together with the state s and the joint moveA.
For a complete definition for all components of the game Γ
we refer to (Schiffel and Thielscher 2009b).

3 Fluent Graphs
Our goal is to obtain knowledge on how fluents evolve over
time. We start by building a fluent graph that contains all
the fluents of a game as nodes. Then we add directed edges
(fi, f) if at least one of the predecessor fluents fi must hold
in the current state for the fluent f to hold in the successor
state. Figure 1 shows a partial fluent graph for Tic-Tac-Toe
that relates the fluents cell(3,1,Z) for Z ∈ {b, x, o}.

Figure 1: Partial fluent graph for Tic-Tac-Toe.

For cell (3,1) to be blank it had to be blank before. For
a cell to contain an x (or an o) in the successor state there
are two possible preconditions. Either, it contained an x (or
o) before or it was blank.

Using this graph, we can conlude that, e.g., a tran-
sition from cell(3,1,b) to cell(3,1,x) is possible



within one step while a transition from cell(3,1,o) to
cell(3,1,x) is impossible.

To build on this information, we formally define a fluent
graph as follows:
Definition 2 (Fluent Graph). Let Γ be a game over ground
terms Σ. A graph G = (V,E) is called a fluent graph for Γ
iff
• V = Σ ∪ {∅} and
• for all fluents f ∈ Σ, two valid states s and s′

(s′ is a successor of s) ∧ f ′ ∈ s′ (1)

⇒ (∃f)(f, f ′) ∈ E ∧ (f ∈ s ∪ {∅})

In this definition we add an additional node ∅ to the graph
and allow ∅ to occur as the source of edges. The reason is
that there can be fluents in the game that do not have any pre-
conditions, for example the fluent g with the following next
rule: next(g) :- distinct(a,b). On the other hand,
there might be fluents that cannot occur in any state, because
the body of the corresponding next rule is unsatisfiable, for
example: next(h) :- distnict(a,a). We distinguish
between fluents that have no precondition (such as g) and
fluents that are unreachable (such as h) by connecting the
former to the node ∅ while unreachable fluents have no edge
in the fluent graph.

Note that the definition covers only some of the neces-
sary preconditions for fluents, therefore fluent graphs are not
unique as Figure 2 shows. We will address this problem
later.

Figure 2: Alternative partial fluent graph for Tic-Tac-Toe.

We can now define a distance function ∆(s, f ′) between
the current state s and a state in which fluent f ′ holds as
follows:
Definition 3 (Distance Function). Let ∆G(f, f ′) be the
length of the shortest path from node f to node f ′ in the
fluent graph G or∞ if there is no such path. Then

∆(s, f ′) = min
f∈s∪{∅}

∆G(f, f ′)

That means, we compute the distance ∆(s, f ′) as the
shortest path in the fluent graph from any fluent in s to f ′.

Intuitively, each edge (f, f ′) in the fluent graph corre-
sponds to a state transition of the game from a state in which
f holds to a state in which f ′ holds. Thus, the length of
a path from f to f ′ in the fluent graph corresponds to the
number of steps in the game between a state containing f
to a state containing f ′. Of course, the fluent graph is an
abstraction of the actual game: many preconditions for the
state transitions are ignored. As a consequence, the distance
∆(s, f ′) that we compute in this way is a lower bound on

the actual number of steps it takes to go from s to a state in
which f ′ holds. Therefore the distance ∆(s, f ′) is an admis-
sible heuristic for reaching f ′ from a state s.
Theorem 1 (Admissible Distance). Let
• Γ = (R, s0, T, l, u, g) be a game with ground terms Σ and

states S,
• s1 ∈ S be a state of Γ,
• f ∈ Σ be a fluent of Γ, and
• G = (V,E) be a fluent graph for Γ.
Furthermore, let s1 7→ s2 7→ . . . 7→ sm+1 denote a legal
sequence of states of Γ, that is, for all i with 0 < i ≤ m
there is a joint action Ai, such that:

si+1 = u(Ai, si) ∧ (∀r ∈ R)l(r,Ai(r), s)

If ∆(s1, f) = n, then there is no legal sequence of states
s1 7→ . . . 7→ sm+1 with f ∈ sm+1 and m < n.

Proof. We prove the theorem by contradiction. Assume that
∆(s1, f) = n and there is a a legal sequence of states s1 7→
. . . 7→ sm+1 with f ∈ sm+1 and m < n. By Definition 2,
for every two consecutive states si, si+1 of the sequence
s1 7→ . . . 7→ sm+1 and for every fi+1 ∈ si+1 there is an
edge (fi, fi+1) ∈ E such that fi ∈ si or fi = ∅. Therefore,
there is a path fj , . . . , fm, fm+1 in G with 1 ≤ j ≤ m and
the following properties:
• fi ∈ si for all i = j, ...,m+ 1,
• fm+1 = f , and
• either fj ∈ s1 (e.g., if j = 1) or fj = ∅.
Thus, the path fj , . . . , fm, fm+1 has a length of at most m.
Consequently, ∆(s1, f) ≤ m because fj ∈ s1 ∪ {∅} and
fm+1 = f . However, ∆(s1, f) ≤ m together with m < n
contradicts ∆(s1, f) = n.

4 Constructing Fluent Graphs from Rules
We propose an algorithm to construct a fluent graph based
on the rules of the game. The transitions of a state s to its
successor state s′ are encoded fluent-wise via the next rules.
Consequently, for each f ′ ∈ s′ there must be at least one rule
with the head next(f’). All fluents occurring in the body
of these rules are possible sources for an edge to f ′ in the
fluent graph.

For each ground fluent f ′ of the game:
1. Construct a ground disjunctive normal form φ of
next(f ′), i.e., a formula φ such that next(f ′) ⊃ φ.

2. For every disjunct ψ in φ:
• Pick one literal true(f) from ψ or set f = ∅ if there

is none.
• Add the edge (f, f ′) to the fluent graph.
Note, that we only select one literal from each disjunct

in φ. Since, the distance function ∆(s, f ′) obtained from
the fluent graph is admissible, the goal is to construct a flu-
ent graph that increases the lengths of the shortest paths be-
tween the fluents as much as possible. Therefore, the fluent
graph should contain as few edges as possible. In general
the complete fluent graph (i.e., the graph where every fluent
is connected to every other fluent) is the least informative
because the maximal distance obtained from this graph is 1.

The algorithm outline still leaves some open issues:



1. How do we construct a ground formula φ that is the dis-
junctive normal form of next(f ′)?

2. Which literal true(f) do we select if there is more than
one? Or, in other words, which precondition f ′ of f do
we select?
We will discuss both issues in the following sections.

4.1 Constructing a DNF of next(f ′)
A formula φ in DNF is a set of formulas {ψ1, . . . , ψn} con-
nected by disjunctions such that each formula ψi is a set of
literals connected by conjunctions. We propose the algo-
rithm in Figure 4.1 to construct φ such that next(f ′) ⊃ φ.

Algorithm 1 Constructing a formula φ in DNF with
next(f ′) ⊃ φ.
Input: game description D, ground fluent f ′
Output: φ, such that next(f ′) ⊃ φ

1: φ := next(f ′)
2: finished := false
3: while ¬finished do
4: Replace every positive occurrence of does(r, a) in φ

with legal(r, a).
5: Select a positive literal l from φ such that l 6=

true(t), l 6= distinct(t1, t2) and l is not a re-
cursively defined predicate.

6: if there is no such literal then
7: finished := true
8: else
9: l̂ :=

∨
h:-b∈D,lσ=hσ

bσ

10: φ := φ{l/l̂}
11: end if
12: end while
13: Transform φ into disjunctive normal form, i.e., φ = ψ1∨

. . .∨ψn and each formula ψi is a conjunction of literals.
14: for all ψi in φ do
15: Replace ψi in φ by a disjunction of all ground in-

stances of ψi.
16: end for

The algorithm starts with φ = next(f ′). Then, it se-
lects a positive literal l in φ and unrolls this literal, that
is, it replaces l with the bodies of all rules whose head
matches l (lines 9, 10). The replacement is repeated until
all predicates that are left are either of the form true(t),
distinct(t1, t2) or recursively defined. Recursively de-
fined predicates are not unrolled to ensure termination of the
algorithm. Finally, we transform φ into disjunctive normal
form and replace each disjunct ψi of φ by a disjunction of
all of its ground instances in order to get a ground formula
φ.

Note that in line 4, we replace every occurrence of does
with legal to also include the preconditions of the ac-
tions that are executed in φ. As a consequence the result-
ing formula φ is not equivalent to next(f ′). However,
next(f ′) ⊃ φ, under the assumption that only legal moves
can be executed, i.e., does(r, a) ⊃ legal(r, a). This is
sufficient for constructing a fluent graph from φ.

Note, that we do not select negative literals for unrolling.
The algorithm could be easily adapted to also unroll nega-
tive literals. However, in the games we encountered so far,
doing so does not improve the obtained fluent graphs but
complicates the algorithm and increases the size of the cre-
ated φ. Unrolling negative literals will mainly add negative
preconditions to φ. However, negative preconditions are not
used for the fluent graph because a fluent graph only con-
tains positive preconditions of fluents as edges, according to
Definition 2.

4.2 Selecting Preconditions for the Fluent Graph
If there are several literals of the form true(f) in a disjunct
ψ of the formula φ constructed above, we have to select one
of them as source of the edge in the fluent graph. As already
mentioned, the distance ∆(s, f) computed with the help of
the fluent graph is a lower bound on the actual number of
steps needed. To obtain a good lower bound, that is one
that is as large as possible, the paths between nodes in the
fluent graph should be as long as possible. Selecting the best
fluent graph, i.e., the one which maximizes the distances, is
impossible. Which fluent graph is the best one depends on
the states we encounter when playing the game, but we do
not know these states beforehand. In order to generate a
fluent graph that provides good distance estimates, we use
several heuristics when we select literals from disjuncts in
the DNF of next(f ′):

First, we only add new edges if necessary. That means,
whenever there is a literal true(f) in a disjunct ψ such that
the edge (f, f ′) already exists in the fluent graph, we select
this literal true(f). The rationale of this heuristic is that
paths in the fluent graph are longer on average if there are
fewer connections between the nodes.

Second, we prefer a literal true(f) over true(g) if f
is more similar to f ′ than g is to f ′, that is sim(f, f ′) >
sim(g, f ′).

We define the similarity sim(t, t′) recursively over
ground terms t, t′:

sim(t, t′) =


1 : t, t′ have arity 0 and t = t′∑
i sim(ti, t

′
i) : t = f(t1, . . . , tn) and

t′ = f(t′1, . . . , t
′
n)

0 : else

In human made game descriptions, similar fluents typ-
ically have strong connections. For example, in Tic-Tac-
Toe cell(3,1,x) is more related to cell(3,1,b) than to
cell(b,3,x). By using similar fluents when adding new
edges to the fluent graph, we have a better chance of finding
the same fluent again in a different disjunct of φ. Thus we
maximize the chance of reusing edges.

5 Applying Distance Features
For using the distance function in our evaluation function,
we define the normalized distance δ(s, f).

δ(s, f) =
∆(s, f)

∆max(f)



The value ∆max(f) is the longest distance ∆G(g, f) from
any fluent g to f , i.e.,

∆max(f)
def
= max

g
∆G(g, f)

where ∆G(g, f) denotes the length of the shortest path from
g to f in the fluent graph G.

Thus, ∆max(f) is the longest possible distance ∆(s, f)
that is not infinite. The normalized distance δ(s, f) will be
infinite if ∆(s, f) =∞, i.e., there is no path from any fluent
in s to f in the fluent graph. In all other cases it holds that
0 ≤ δ(s, f) ≤ 1.

Note, that the construction of the fluent graph and com-
puting the shortest paths between all fluents, i.e., the dis-
tance function ∆G, need only be done once for a game.
Thus, while construction of the fluent graph is more expen-
sive for complex games, the cost of computing the distance
feature δ(s, f) (or ∆(s, f)) only depends (linearly) on the
size of the state s.

5.1 Using Distance Features in an Evaluation
Function

To demonstrate the application of the distance measure pre-
sented, we use a simplified version of the evaluation function
of Fluxplayer (Schiffel and Thielscher 2007) implemented
in Prolog. It takes the ground DNF of the goal rules as first
argument, the current state as second argument and returns
the fuzzy evaluation of the DNF on that state as a result.

1 eval((D1; ..; Dn), S, R) :- !,
2 eval(D1, S, R1), .., eval(Dn, S, Rn),
3 R is sum(R1, .., Rn) - product(R1, .., Rn)
4 eval((C1, .., Cn), S, R) :- !,
5 eval(C1, S, R1), .., eval(Cn, S, Rn),
6 R is product(R1, .., Rn).
7 eval(true(F), S, 0.9) :- occurs(F, S), !.
8 eval(true(F), S, 0.1).

Disjunctions are transformed to probabilistic sums, con-
junctions to products, and true statements are evaluated to
values in the interval [0, 1], basically resembling a recursive
fuzzy logic evaluation using the product t-norm and the cor-
responding probabilistic sum t-conorm. The state value in-
creases with each conjunct and disjunct fulfilled.

We compare this basic evaluation to a second function that
employs our relative distance measure, encoded as predicate
delta. We obtain this distance-based evaluation function
by substituting line 8 of the previous program by the follow-
ing four lines:

1 eval(true(F), S, R) :- delta(S, F, Distance),
2 Distance =< 1, !,
3 R is 0.8*(1-Distance) + 0.1.
4 eval(true(F), S, 0).

Here, we evaluate a fluent that does not occur in the current
state to a value in [0.1, 0.9] and, in case the relative distance
is infinite, to 0 since this means that the fluent cannot hold
anymore.

state s1 state s2

Figure 3: Two states of the Tic-Tac-Toe. The first row is still
open in state s1 but blocked in state s2.

5.2 Tic-Tac-Toe
Although on first sight Tic-Tac-Toe contains no relevant dis-
tance information, we can still take advantage of our dis-
tance function. Consider the two states as shown in Figure 3.
In state s1 the first row consists of two cells marked with an
x and a blank cell. In state s2 the first row contains two xs
and one cell marked with an o. State s1 has a higher state
value than s2 for xplayer since in s1 xplayer has a threat
of completing a line in contrast to s2. The corresponding
goal condition for xplayer completing the first row is:

1 line(x) :- true(cell(1,1,x)),
2 true(cell(2,1,x)), true(cell(3,1,x)).

When evaluating the body of this condition using our stan-
dard fuzzy evaluation, we see that it cannot distinguish be-
tween s1 and s2 because both have two markers in place and
one missing for completing the line for xplayer. Therefore
it evaluates both states to 1 ∗ 1 ∗ 0.1 = 0.1.

However, the distance-based function eval-
uates true(cell(3,1,b)) of s1 to 0.1 and
true(cell(3,1,o)) of s2 to 0. Therefore, it can
distinguish between both states, returning R = 0.1 for
S = s1 and R = 0 for S = s2.

5.3 Breakthrough
The second game is Breakthrough, again a two-player game
played on a chessboard. Like in chess, the first two ranks
contain only white pieces and the last two only black pieces.
The pieces of the game are only pawns that move and cap-
ture in the same way as pawns in chess, but without the ini-
tial double advance. Whoever reaches the opposite side of
the board first wins. 2 Figure 4 shows the initial position
for Breakthrough. The arrows indicate the possible moves,
a pawn can make.

The goal condition for the player black states that black
wins if there is a cell with the coordinates X,1 and the con-
tent black, such that X is an index (a number from 1 to 8
according to the rules of index):

1 goal(black, 100) :-
2 index(X), true(cellholds(X, 1, black)).

Grounding this rule yields

2The complete rules for Breakthrough as
well as Tic-Tac-Toe can be found under
http://ggpserver.general-game-playing.de/



1 goal(black, 100) :-
2 (true(cellholds(1, 1, black);
3 ..;
4 true(cellholds(8, 1, black)))

We omitted the index predicate since it is true for all 8
ground instances.

The standard evaluation function cannot distinguish any
of the states in which the goal is not reached because
true(cellholds(X, 1, black)) is false in all of these
states for any instance of X.

The distance-based evaluation function is based on the
fluent graph depicted in Figure 5.

Figure 4: Initial position in Breakthrough and the move op-
tions of a pawn.

Figure 5: A partial fluent graph for Breakthrough, role black.

Obviously it captures the way pawns move in
chess. Therefore evaluations of atoms of the form
true(cellholds(X, Y, black)) have now 9 possible

values (for distances 0 to 7 and ∞) instead of 2 (true and
false). Hence, states where black pawns are nearer to one of
the cells (1,8), . . ., (8,8) are preferred.

Moreover, the fluent graph, and thus the distance function,
contains the information that some locations are only reach-
able from certain other locations. Together with our evalu-
ation function this leads to what could be called “strategic
positioning”: states with pawns on the side of the board are
worth less than those with pawns in the center. This is due
to the fact that a pawn in the center may reach more of the 8
possible destinations than a pawn on the side.

6 Evaluation
For evaluation, we implemented our distance function
and equipped the agent system Fluxplayer (Schiffel and
Thielscher 2007) with it. We then set up this version of
Fluxplayer (“flux distance”) against its version without the
new distance function (“flux basic”). We used the version
of Fluxplayer that came in 4th in the 2010 championship.
Since flux basic is already endowed with a distance heuris-
tic, the evaluation is comparable to a competition setting of
two competing heuristics using distance features.

We chose 19 games for comparison in which we con-
ducted 100 matches on average. Figure 6 shows the results.

pawn_whopping
battle

breakthrough
3pffa

four_way_battle
chinesecheckers3

point_grab
lightsout

catch_a_mouse
doubletictactoe

tictactoe
racetrackcorridor
smallest_4player
chickentictactoe

capture_the_king
chinesecheckers2

nim4
breakthroughsuicide_v2

knightthrough

-60 -40 -20 0 20 40 60

pawn_whopping
battle

breakthrough
3pffa

four_way_battle
chinesecheckers3

point_grab
lightsout

catch_a_mouse
doubletictactoe

tictactoe
racetrackcorridor
smallest_4player
chickentictactoe

capture_the_king
chinesecheckers2

nim4
breakthroughsuicide_v2

knightthrough

-60 -40 -20 0 20 40 60

Figure 6: Advantage in Win Rate of flux distance

The values indicate the difference in win rate, e.g., a value
of +10 indicates the flux distance won 55% of the games
against flux basic winning 45%. Obviously the proposed
heuristics produces results comparable to the flux basic
heuristics, with both having advantages in some games. This
has several reasons: Most importantly, our proposed heuris-
tic, in the way it is implemented now, is more expensive
than the distance estimation used in flux basic. Therefore
the evaluation of a state takes longer and the search tree can



not be explored as deeply as with cheaper heuristics. This
accounts for three of the four underperforming games. For
example in nim4, the flux basic distance estimation provides
essentially the same results as our new approach, just much
cheaper. In chinesecheckers2 and knightthrough, the new
distance function slows down the search more than its better
accuracy can compensate.

On the other hand, flux distance performs better in com-
plicated games since our proposed distance evaluation is a
better estimate. Interestingly, flux distance therefore loses
in breakthrough suicide. The game is exactly the same as
breakthrough, however, the player to reach the other side of
the board first does not win, but loses. The heuristics of
both flux basic and flux distance are not good for this game.
However, the better distance estimates of flux distance am-
plify the (bad) heuristics. In this case, flux distance does
not capture advanced opponent pawns, because these pawns
are near to the side of the board on which the opponent
loses. However, these pawns than capture flux distance’s
own pawns such that flux distance loses pieces and is forced
to advance the few remaining pawns quickly. Thus, the
problem in this game is not the distance estimate but the fact
that the heuristic is not suitable for the game.

Finally, in some of the games no changes were found
since both distance estimates performed equally well. How-
ever, rather specific heuristics and analyzation methods of
flux basic could be replaced by our new general approach.
For example, the original Fluxplayer contains a special
method to detect when a fluent is unreachable, while this
information is automatically included in our distance esti-
mate.

Apart from the above results, we intended to use more
games for evaluation, however, we found that the fluent
graph construction takes too much time in some games
where the next rules are complex. We discuss these issues
in Section 8.

7 Related Work
Distance features are part of classical agent programming
for games like chess and checkers in order to measure,
e.g., the distance of a pawn to the promotion rank. A
more general detection mechanism was first employed
in Metagamer (Pell 1993) where the features “promote-
distance” and “arrival-distance” represented a value indi-
rectly proportional to the distance of a piece to its arrival
or promotion square. However, due to the restriction on
symmetric chess-like games, boards and their representation
were predefined and thus predefined features could be ap-
plied as soon as some promotion or arrival condition was
found in the game description.

Currently, a number of GGP agent systems apply distance
features in different forms. UTexas (Kuhlmann, Dresner,
and Stone 2006) identifies order relations syntactically and
tries to find 2d-boards with coordinates ordered by these re-
lations. Properties of the content of these cells, such as min-
imal/maximal x- and y-coordinates or pair-wise Manhattan
distances are then assumed as candidate features and may
be used in the evaluation function. Fluxplayer (Schiffel and

Thielscher 2007) generalizes the detection mechanism us-
ing semantic properties of order relations and extends board
recognition to arbitrarily defined n-dimensional boards.

Another approach is pursued by Cluneplayer (Clune
2007) who tries to impose a symbol distance interpretation
on expressions found in the game description. Symbol dis-
tances, however, are again calculated using Manhattan dis-
tances on ordered arguments of board-like fluents, eventu-
ally resulting in a similar distance estimate as UTexas and
Fluxplayer.

Although not explained in detail, Ogre (Kaiser 2007) also
employs two features that measure the distance from the ini-
tial position and the distance to a target position. Again,
Ogre relies on syntactic detection of order relations and
seems to employ a board centered metrics, ignoring the
piece type.

All of these approaches rely on the identification of struc-
tures in the game (such as game boards), but can not be used
for fluents that do not belong to such a structure. Further-
more, they make assumptions about the distances on these
structures (usually Manhattan distance) that are not neces-
sarily connected to the game dynamics, e.g., how different
pieces move on a board.

In domain independent planning, distance heuristics are
used successfully, e.g., in HSP (Bonet and Geffner 2001)
and FF (Hoffmann and Nebel 2001). The heuristics h(s)
used in these systems is an approximation of the plan length
of a solution in a relaxed problem, where negative effects
of actions are ignored. This heuristics is known as delete list
relaxation. While on first glance this may seems very similar
to our approach, several differences exist:

• The underlying languages, GDL for general game playing
and PDDL for planning, are different. A translation of
GDL to PDDL is expensive in many games (Kissmann
and Edelkamp 2010). Thus, directly applying planning
systems is not often not feasible.

• The delete list relaxation considers all (positive) precon-
ditions of a fluent, while we only use one precondition.
This enables us to precompute the distance between the
fluents of a game.

• While goal conditions of most planning problems are sim-
ple conjunctions, goals in the general games can be very
complex (e.g., checkmate in chess). Additionally, the plan
length is usually not a good heuristics, given that only the
own actions and not those of the opponents can be con-
trolled. Thus, distance estimates in GGP are usually not
used as the only heuristics but only as a feature in a more
complex evaluation function. As a consequence, comput-
ing distance features must be relatively cheap.

• Computing the plan length of the relaxed planning prob-
lem is NP-hard, and even the approximations used in HSP
or FF that are not NP-hard require to search the state space
of the relaxed problem. On the other hand, computing dis-
tance estimates with our solution is relatively cheap. The
distances ∆G(f, g) between all fluents f and g in the flu-
ent graph can be precomputed once for a game. Then,
computing the distance ∆(s, f ′) (see Definition 3) is lin-



ear in the size of the state s, i.e., linear in the number of
fluents in the state.

8 Future Work
The main problem of the approach is its computational cost
for constructing the fluent graph. The most expensive steps
of the fluent graph construction are grounding of the DNF
formulas φ and processing the resulting large formulas to
select edges for the fluent graph. For many complex games,
these steps cause either out-of-memory or time-out errors.
Thus, an important line of future work is to reduce the size of
formulas before the grounding step without losing relevant
information.

One way to reduce the size of φ is a more selective ex-
pansion of predicates (line 5) in Algorithm 4.1. Developing
heuristics for this selection of predicates is one of the goals
for future research.

In addition, we are working on a way to construct flu-
ent graphs from non-ground representations of the precon-
ditions of a fluent to skip the grounding step completely.
For example, the partial fluent graph in Figure 1 is identical
to the fluent graphs for the other 8 cells of the Tic-Tac-Toe
board. The fluent graphs for all 9 cells are obtained from the
same rules for next(cell(X,Y,_), just with different in-
stances of the variables X and Y. By not instantiating X and Y,
the generated DNF is exponentially smaller while still con-
taining the same information.

The quality of the distance estimates depends mainly on
the selection of preconditions. At the moment, the heuristics
we use for this selection are intuitive but have no thorough
theoretic or empiric foundation. In future, we want to inves-
tigate how these heuristics can be improved.

Furthermore, we intend to enhance the approach to use
fluent graphs for generalizations of other types of features,
such as, piece mobility and strategic positions.

9 Summary
We have presented a general method of deriving distance
estimates in General Game Playing. To obtain such a dis-
tance estimate, we introduced fluent graphs, proposed an al-
gorithm to construct them from the game rules and demon-
strated the transformation from fluent graph distance to a
distance feature.

Unlike previous distance estimations, our approach does
not rely on syntactic patterns or internal simulations. More-
over, it preserves piece-dependent move patterns and pro-
duces an admissible distance heuristic.

We showed on an example how these distance features
can be used in a state evaluation function. We gave two
examples on how distance estimates can improve the state
evaluation and evaluated our distance against Fluxplayer in
its most recent version.

Certain shortcomings should be addressed to improve the
efficiency of fluent graph construction and the quality of the
obtained distance function. Despite these shortcomings, we
found that a state evaluation function using the new distance
estimates can compete with a state-of-the-art system.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.
Clune, J. 2007. Heuristic evaluation functions for general
game playing. In AAAI. Vancouver: AAAI Press.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Kaiser, D. M. 2007. Automatic feature extraction for au-
tonomous general game playing agents. In Proceedings of
the Sixth Intl. Joint Conf. on Autonomous Agents and Multi-
agent Systems.
Kissmann, P., and Edelkamp, S. 2010. Instantiating general
games using prolog or dependency graphs. In Dillmann,
R.; Beyerer, J.; Hanebeck, U. D.; and Schultz, T., eds., KI,
volume 6359 of Lecture Notes in Computer Science, 255–
262. Springer.
Kuhlmann, G.; Dresner, K.; and Stone, P. 2006. Auto-
matic Heuristic Construction in a Complete General Game
Player. In Proceedings of the Twenty-First National Con-
ference on Artificial Intelligence, 1457–62. Boston, Mas-
sachusetts, USA: AAAI Press.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2008. General game playing: Game description
language specification. Technical Report March 4, Stanford
University. The most recent version should be available at
http://games.stanford.edu/.
Pell, B. 1993. Strategy generation and evaluation for meta-
game playing. Ph.D. Dissertation, University of Cambridge.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In Proceedings of the National
Conference on Artificial Intelligence, 1191–1196. Vancou-
ver: AAAI Press.
Schiffel, S., and Thielscher, M. 2009a. Automated theo-
rem proving for general game playing. In Proceedings of
the International Joint Conference on Artificial Intelligence
(IJCAI).
Schiffel, S., and Thielscher, M. 2009b. A multiagent seman-
tics for the game description language. In Filipe, J.; Fred, A.;
and Sharp, B., eds., International Conference on Agents and
Artificial Intelligence (ICAART). Porto: Springer.


