
Symmetry Detection in General Game Playing

Stephan Schiffel

Department of Computer Science

Dresden University of Technology

stephan.schiffel@inf.tu-dresden.de

Abstract

We develop a method for detecting symmetries in
arbitrary games and exploiting these symmetries
when using tree search to play the game. Games
in the General Game Playing domain are given as
a set of logic based rules defining legal moves,
their effects and goals of the players. The pre-
sented method transforms the rules of a game into
a vertex-labeled graph such that automorphisms of
the graph correspond with symmetries of the game.
The algorithm detects many kinds of symmetries
that often occur in games, e.g., rotation and re-
flection symmetries of boards, interchangeable ob-
jects, and symmetric roles. A transposition table is
used to efficiently exploit the symmetries in many
games.

1 Introduction

Exploiting symmetries of the underlying domain is an impor-
tant optimization technique for all kinds of search algorithms.
Typically, symmetries increase the search space and thus the
cost for finding a solution to the problem exponentially. There
is a lot of research on symmetry breaking in domains like CSP
[Puget, 2005], Planning [Fox and Long, 1999] or SAT-solving
[Aloul et al., 2002]. However, the methods developed in these
domains are either limited in the types of symmetries that are
handled or are hard to adapt to the General Game Playing do-
main because of significant differences in the structure of the
problem.
General game playing is concerned with the development

of systems that can play well an arbitrary game solely by be-
ing given the rules of the game. This raises a number of issues
different from traditional research in game playing, where it is
assumed that the rules of a game are known to the program-
mer. Systems able to play arbitrary, unknown games can’t
be given game-specific knowledge. They rather need to be
endowed with high-level cognitive abilities such as general
strategic thinking and abstract reasoning. To exploit symme-
tries in a general game playing domain, the system must be
able to automatically detect symmetries based on the rules
of the game. [Banerjee et al., 2006] already exploit symme-
tries in general games in order to improve learning efficiency.
However, they use only rotation and reflection symmetries of

boards and do not treat the problem of symmetry exploitation
in general.
We present an approach to transform the rules of a game

into a vertex-labeled graph such that automorphisms of the
graph correspond with symmetries of the game and prove that
the approach is sound. The algorithm detects many kinds of
symmetries that often occur in games, e.g., rotation and re-
flection symmetries of boards, interchangeable objects, and
symmetric roles. Additionally, we present an extension that
can be used for many search algorithms to exploit the discov-
ered symmetries.

2 Games and Symmetries

Games in the general game playing domain are usually mod-
eled as finite state machines. A state of the state machine is
a state of the game and actions of the players correspond to
transitions of the state machine. In this paper we use the def-
initions of [Schiffel and Thielscher, 2009] and model a game
as a multiagent environment.

Definition (Game (multiagent environment)). Let � be a
countable set of ground (i.e., variable-free) symbolic expres-
sions. A (discrete, synchronous, deterministic) game � is a
structure (R; s0; t; l; u; g), where� R � � finite (the agents, or roles);� s0 � � finite (the initial state);� t � 2� finite (the terminal states);� l � R � � � 2� finite (the action preconditions, or

legality relation);� u : (R 7! �)� 2� 7! 2� finite (the transition function,
or update function);� g � R� N � 2� finite (the utility, or goal relation).

Here, 2� denotes the set of all finite subsets of �, and for anyr 2 R and s 2 2�, l(r; a; s) holds for finitely many a 2 �.
For the sake of simplicity no distinction is made between

symbols for roles, objects, state components, actions, etc.
States of the game are finite sets of ground symbols. The le-
gality relation l(r; a; s) defines a to be a legal action for roler in state s. The update function u takes an action for each
role and (synchronously) applies the joint actions to a current
state, resulting in the updated state.

Several kinds of symmetries may be present in such a
game, e.g., symmetries of states, moves, roles, and sequences
of moves. Intuitively, symmetries of a game can be under-
stood as mappings between objects such that the structure of
the game is preserved. E.g., two states of a game are symmet-
ric if the same actions (or symmetric ones) are legal in both
states, either both or none of them is a terminal state, for each
role both states have the same goal value and executing sym-
metric joint actions in both states yields symmetric successor
states.

Definition (Symmetry). A mapping � : � 7! � is a symme-
try of a game � = (R; s0; t; l; u; g) iff the following condi-
tions hold� r 2 R � �(r) 2 R� (8r; a; s) l(r; a; s) � l(�(r); �(a); �s(s))� (8A; s) u(�a(A); �s(s)) = �s(u(A; s))� s 2 t � �s(s) 2 t� (8r; n; s) g(�(r); n; �s(s)) � g(r; n; s)
Here, �s(s) def= f�(x)jx 2 sg and �a(A) def=f(�(r); �(a))j(r; a) 2 Ag. We will omit the superscripts in
the rest of the paper.

A symmetry of a game expresses role, state, and action
symmetries at the same time. That means there can be a sym-
metry � of a game with �(s1) = s2 and �(r1) = r2 which
means that a state s1 is symmetric to a state s2, but only if
the roles r1 and r2 are swapped. This is not what one would
expect the term “symmetric states” to mean. Therefore, we
give more intuitive definitions for symmetric states and joint
actions here.

Definition (Symmetric States). Let � = (R; s0; t; l; u; g) be
a game with symbolic expressions �. A symmetry � of � is a
state symmetry of � iff (8r 2 R)�(r) = r.
Two states s1; s2 � � are called symmetric if there is a

state symmetry � of � with �(s1) = s2
That means a state symmetry maps each role to itself and

two states are symmetric if there is a symmetry mapping one
state to the other without affecting the roles.

Definition (Symmetric Actions). Let � = (R; s0; t; l; u; g)
be a game with symbolic expressions �. Two joint actionsA1; A2 2 2(R7!�) are called symmetric in a state s � � iff
there is a state symmetry � of � with �(s) = s and �(A1) =A2
Since the result of an actions depend on the state they are

applied in, it only makes sense to talk about symmetric ac-
tions wrt. one particular state. From the definition of symme-
try it follows that the states resulting from the execution of
two symmetric joint actions are symmetric.
Notice that, the symmetries of a game are independent of

the initial state. As a consequence, all games that only differ
in the initial state have the same set of symmetries. We call
such games instances of each other.

Definition (Game Instances). Let � = (R; s0; t; l; u; g)
be a game with symbolic expressions �. A game �0 =(R; s00; t; l; u; g) is called an instance of � with initial states00 if s00 � �.

So far, the games that are considered in General Game
Playing are finite. Thus, it is in principle possible to en-
code games directly as lists and tables. However, because
of the size of such a representation the description is given in
a modular fashion. The language that is used is the Game De-
scription Language[Love et al., 2008] (GDL). The GDL is an
extension of Datalog with functions, equality, some syntac-
tical restrictions to preserve finiteness, and some predefined
keywords.

The following is a partial encoding of a Tic-tac-toe game.
We use Prolog syntax where words starting with uppercase
letters stand for variables and the remaining words are con-
stants.

1 role(xplayer). role(oplayer).

2

3 init(cell(a,1,blank)). init(cell(a,2,blank)).

4 init(cell(a,3,blank)). init(cell(b,1,blank)).

5 init(cell(b,2,blank)). init(cell(b,3,blank)).

6 init(cell(c,1,blank)). init(cell(c,2,blank)).

7 init(cell(c,3,blank)).

8 init(control(xplayer)).

9

10 legal(P, mark(X, Y)) :-

11 true(control(P)), true(cell(X, Y, blank)).

12 legal(P, noop) :-

13 role(P), not true(control(P)).

14

15 next(cell(M, N, x)) :-

16 does(xplayer, mark(M, N)).

17 next(cell(M, N, o)) :-

18 does(oplayer, mark(M, N)).

19 next(cell(M, N, C)) :-

20 true(cell(M, N, C)),

21 does(P, mark(X, Y)),

22 (X \= M ; Y \= N).

23

24 goal(xplayer, 100) :- line(x).

25 goal(xplayer, 50) :- not line(x), not line(o).

26 goal(xplayer, 0) :- line(o).

27 goal(oplayer, 100) :- line(o).

28 goal(oplayer, 50) :- not line(x), not line(o).

29 goal(oplayer, 0) :- line(x).

30

31 terminal :- line(x) ; line(o) ; not open.

32

33 line(P) :- true(cell(X, 1, P)),

34 true(cell(X, 2, P)), true(cell(X, 3, P)).

35 line(P) :- true(cell(a, Y, P)),

36 true(cell(b, Y, P)), true(cell(c, Y, P)).

37 line(P) :- true(cell(a, 1, P)),

38 true(cell(b, 2, P)), true(cell(c, 3, P)).

39 line(P) :- true(cell(a, 3, P)),

40 true(cell(b, 2, P)), true(cell(c, 1, P)).

41

42 open :- true(cell(X, Y, blank)).

The first line declares the roles of the game. Next the initial
state of the game is defined. The unary predicate init de-
fines the properties that are true in the initial state. Lines 10-
13 define the legal moves of the game, where mark(X,Y)
is a legal move for role P if control(P) is true in the
current state (i.e., it’s P’s turn) and the cell X,Y is blank

(cell(X,Y,blank)). If it is not P’s turn then noop is
the only legal move for P. The rules for predicate next

define the properties that hold in the successor state, e.g.,
cell(M,N,x) holds if xplayer marked the cell M,N.
Lines 24 to 29 define the rewards of the players and the con-
dition for terminal states. The rules for both contain auxiliary
predicates line(P) and open which encode the concept of
a line-of-three and the existence of a blank cell, respectively.
The remaining rules are those for line(P) and open.
Besides the keywords, which are printed in bold face, all

predicates, functions, and constants of the game description
are game specific and do not carry a special meaning. That
means, replacing any of them by some other word consis-
tently in the whole game description does not change the
game.

A game description in GDL is a set of GDL rules. In
the following we will interpret this as a set of clauses. The
game for a game description is the multiagent environment
that is its semantics. We repeat Definition 6 of [Schiffel and
Thielscher, 2009] here for the sake of completeness.

Definition (Game for a game description). Let D be a
valid GDL game description, whose signature determines
the set of ground terms �. The game for D is the game(R; s0; t; l; u; g), where� R = fr 2 �jD j= role(r)g� s0 = ff 2 �jD j= init(f)g� t = fs 2 2�jD [strue j= terminalg� l = f(r; a; s) 2 R � �� 2�jD [strue j= legal(r; a)g� u(A; s) = ff 2 �jD [Adoes [strue j= next(f)g� g = f(r; n; s)jr 2 R; n 2 N; s 2 2�; D [strue j=goal(r; n)g
Here strue def= ftrue(f)jf 2 sg axiomatizing s as the cur-

rent state and Adoes def= fdoes(r; a)jr 2 R; a = A(r)g ax-
iomatizes A as a joint action.

3 Rule Graphs

It is not a new idea to use graph automorphisms to compute
symmetries of a problem. This approach has been success-
fully applied to CSPs[Puget, 2005] and SAT solving[Aloul
et al., 2002], among others. However, a key for using this
method is to have a graph representation of the problem such
that the graph has the same symmetries.
Unrelated to symmetries in games, [Kuhlmann and Stone,

2007] describes a mapping of GDL game descriptions to so
called “rule graphs” such that two rule graphs are isomor-
phic if and only if the game descriptions are scramble equiva-
lent. A scrambling of a game description is defined as a one-
to-one mapping between constants and a one-to-one map-
ping between variables of the game. That means, scramble-
equivalent game descriptions are identical up to renaming of
non-keyword constants and variables. Basically, rule graphs
contain vertices for all predicates, functions, constants, and
variables in the game and connections between them that
match the structure of the rules. The nodes of rule graphs

are colored such that isomorphisms can only map constants
to other constants, variables to variables, etc.
We argue that these graphs can be used to compute sym-

metries of games. If there is an automorphisms of such a rule
graph, that means an isomorphism of the graph to itself, then
there is a scrambling of the game description that does not
change the rules of the game. Since constants of the game
description refer to objects in the game, a mapping between
constants that does not change the rules describes configura-
tions of objects that are interchangeable in the game. Figure
1 shows the partial game description of a simple blocks world
domain. The two blocksa and b have the same properties ini-
tially and do not occur in any other rule. Therefore, they are
interchangeable. It can be seen that substituting a for b and
b for a simultaneously in the game description only changes
the order of the rules, which is unimportant since the game
description is considered to be a set of rules.

role(player).

init(clear(a)). init(clear(b)).

legal(player, stack(X, Y)) :-

true(clear(X)), true(clear(Y)).

next(on(X, Y)) :- does(player, stack(X, Y)).

goal(player, 100) :- true(on(X, Y)).

...

Figure 1: In this simple blocks world domain, the goal is to
stack two arbitrary blocks on each other.

Since roles of a game and coordinates of a board game are
typically encoded by constants, too, automorphisms of the
rule graph also reflect reflection symmetries of boards (swap-
ping of coordinates) and symmetric roles. E.g., in the Tic-
tac-toe example above, swapping of a and c or 1 and 3 cor-
responds to horizontal or vertical reflection of the board, re-
spectively. However, rotation symmetry of the board can not
be expressed by a mapping between constants of the game,
if the typical representation of a board, cell(X,Y,_), is
used. A rotation of the Tic-tac-toe board by 90 degrees would
correspond to swapping of the row and column argument of
the cell-function and the mapping between the coordinatesf1 7! a; 2 7! b; 3 7! ; a 7! 3; b 7! 2; 7! 1g. The rule
graphs from [Kuhlmann and Stone, 2007] do not allow this
kind of mapping.
Therefore, we propose enhanced rule graphs, which dif-

fer from the rule graphs from [Kuhlmann and Stone, 2007]

mainly by replacing the ordering edges between arguments
with argument index vertices.

Definition (Enhanced Rule Graph). Let D be a valid GDL
game description. The enhanced rule graph ofD is the small-
est vertex labeled graph G = (V;E; l) with the following
properties:� If v = h : �b1; : : : ; bn is a rule in D then v 2 V ,(v; h); (v; b1); : : : ; (v; bn); (h; b1); : : : ; (h; bn) 2 E andl(r) = rule.� If a negation v = not a occurs in a rule in D then v 2V , (v; a) 2 E and l(n) = not.� If an atom v = p(t1; : : : ; tn) occurs in a

rule in D and p is init, true, next, does,legal, role, goal, or terminal then v 2 V ,(v; t1); : : : ; (v; tn); (t1; t2); : : : ; (tn�1; tn) 2 E andl(v) = p.� If an atom v = (t1 6= t2) occurs in a rule in D thenv 2 V , (v; t1); (v; t2) 2 E and l(v) = 6=.� If an atom v = p(t1; : : : ; tn) occurs in a rule inD and p is not a GDL keyword then v 2 V ,(v; t1); : : : ; (v; tn); (p; v); (p1; t1); : : : ; (pn; tn) 2 E
and l(v) = prediate.� If a function v = f(t1; : : : ; tn) occurs in a rule
in D then v 2 V , (v; t1); : : : ; (v; tn), (f; v),(f1; t1); : : : ; (fn; tn) 2 E and l(v) = funtion.� If a variable v occurs in a rule inD then v 2 V , l(v) =variable.� For every n-ary non-keyword relation symbol or
function symbol p in D, p=n; p1; : : : ; pn 2 V ,(p; p1); : : : ; (p; pn) 2 E, l(p) = symbolonst, andl(pi) = arg for i 2 [1; n℄.� For every variable symbol v in D, vs 2 V , and l(v) =symbolvar.

Constants are treated as null-ary functions.

In the definition we considered only game descriptions
without disjunctions and where only atomic formulas are al-
lowed to occur negated. Variables in different clauses should
be named differently. Every game description can be eas-
ily transformed into an equivalent one which meets these re-
quirements. There is a vertex v in the rule graph for every
formula and term in a game description. Additionally there
are vertices for every relation symbol and function symbol
(vertices p and f). The vertex of a relation symbol is con-
nected to every vertex for an atom of this relation symbol and
the vertex of a function symbol is connected to every vertex
for function term with this function symbol. Furthermore for
every argument position i of relation symbol p (or function
symbol f) there is a vertex pi (or f i) which is connected to
every term that occurs in the i-th argument of p (or f) some-
where in the game description. Note that every occurrence of
an atom or term is treated as a different atom or term. That
means if the same term occurs twice in the rules there are two
vertices, one for each occurrence.
In figure 2 you can see the (enhanced1) rule graph for the

following rule of Tic-tac-toe:

next(cell(M, N, x)) :-

does(xplayer, mark(M, N)).

4 Theoretic Results

If we use the rule graph of the complete game description
to compute symmetries, we only get symmetries that are
present in the initial state of the game. However, there may
be so called “dynamic symmetries”, i.e., symmetries that oc-
cur only in some states of the game but are not present in the

1In the remainder of the paper we write “rule graph” instead of
“enhanced rule graph”. All results apply to enhanced rule graphs.

Figure 2: Rule graph for next(cell(M, N, x)) :-

does(xplayer, mark(M, N)). Different labels are
depicted by different shapes, relation vertices by ellipses,
function vertices by rectangles, variable vertices by dia-
monds. The respective symbol vertices have dashed instead
of solid lines. Argument index vertices are parallelograms.

initial state. To also find these symmetries, the initial state of
the game must not be part of the rule graph.

Definition (State-independent game description). Let D be
a game description. The state-independent game descriptionD0 = D n finit(F) 2 Dg. That means D0 contains all the
rules of D except for the initial state description. The rule
graph G of D0 is called the state-independent rule graph ofD.

It is clear, that game descriptions that differ only in the ini-
tial state have the same state-independent rule graph. There-
fore, a state-independent rule graph includes symmetries of
all instances of a game.

Definition (Game description for a state). Let D be a game
description, � be a game for D, and D0 be the state-
independent game description of D. The game description

of a state s of � is defined as D(s) def= D0 [strue. The rule
graph ofD(s) is called the rule graph for state s.
Intuitively, a rule graph for a state s only contains the sym-

metries of a game that map s to itself.
In order to reflect the reordering of arguments we extend

the definition of a scrambling of a game description from
[Kuhlmann and Stone, 2007].

Definition (Scrambling of a game description). A scrambling
of a game description D is a one-to-one function over func-
tion, relation and variable symbols and argument indices of
function symbols and non-keyword relation symbols inD.

Our first theorem describes the connection between auto-
morphisms of rule graphs and scramblings of game descrip-
tion.

Theorem 1 (Scramblings and Automorphisms). Let D be a
game description,G = (V;E; l) its rule graph andH the set
of automorphisms of G. Leth1 � h2 def=(8v 2 V) l(v) 2 fsymbolonst; symbolvar; argg� h1(v) = h2(v)

That means two automorphisms h1; h2 of H are considered
equivalent exactly if they agree on the mapping of all symbol
vertices and argument index vertices. There is a one-to-one
mapping between the quotient setH= � and scramblings that
mapD toD.

Proof Sketch. The rule graph construction algorithm adds
exactly one symbol label vertex to the graph for each symbol
in D, and exactly one argument index vertex for each argu-
ment index of all function symbols and non-keyword relation
symbols in D. That means, there are one-to-one mappings
between symbols of D and symbol vertices Vs, and between
argument indices and argument index vertices Va.
The remaining proof consists of two parts. First, it is shown

that for each automorphism h of G there is indeed a scram-
bling of D, which corresponds to h via the mappings de-
fined by the rule graph construction. The proof follows the
structure of the proof in [Kuhlmann and Stone, 2007] but is
adapted to deal with argument reorderings.

For the inverse direction it is clear that a scrambling of D
determines one-to-one mappings over Vs and Va. Based on
the edges which are in the rule graph it can be shown that a
set of equivalent automorphisms of G (equivalent wrt. �) is
completely determined by these mappings.

One implication of the theorem is that we can compute all
scramblings mapping a game description to itself by comput-
ing all automorphisms of its rule graph.

Theorem 2 (Symmetries and Automorphisms). Let D be a
game description, � = (R; s0; t; l; u; g) the game for D, D0
the state independent game description for D, G0 the state
independent rule graph of D, h be an automorphism of G0,
and �0 be a scrambling ofD0 corresponding to h. Intuitively,�0 can be understood as a bijective mapping between arbi-
trary terms of D0. Now, let � be a bijective extension of �0 to
all terms of D. That means � agrees with �0 on the mapping
of all terms of D0 and may map the remaining terms of D
arbitrarily without violating bijectivity.

Then � is a symmetry of � corresponding to h.
Proof Sketch. The proof uses the construction of the game� from the game description D to show that � satisfies the
defining properties of a symmetry.

E.g., one has to prove that s 2 t � �(s) 2 t, where t is
the set of terminal states of �. By the construction of a game
from a game description �(s) 2 t is equivalent toD [ftrue(f)jf 2 �(s)g j= terminal
This is equivalent toD [�(ftrue(f)jf 2 sg) j= terminal
because true is a keyword and keywords are mapped to them-
selves by �. Now since �(D) = D and terminal is a key-
word, this is equivalent toD [strue j= terminal,
which is equivalent to s 2 t by definition.
The remaining properties of a symmetry can be shown in a

similar fashion.

Observe that, the game description D can contain func-
tion symbols or constants that are not included in the state-
independent game description D0. If so, these symbols are
only part of the initial state description and do not occur any-
where else in the rules of the game. Therefore, they refer to
objects of the game that are interchangeable and can be arbi-
trarily mapped to each other by the symmetry.
In order to use the approach for computing only state sym-

metries of a game or only symmetries of a particular state
of the game only minor changes have to be made to the rule
graph. To compute only state symmetries it is necessary to
restrict the automorphisms of the rule graph in such a way
that constants denoting roles can only be mapped to themself.
This can be achieved by assigning each node in the rule graph
that belongs to a role-fact a different label. Symmetries of
a particular state s, like symmetric actions in a state, can be
computed by using the rule graph for state s to compute the
symmetries.

5 Exploiting Symmetries

There are several ways to exploit symmetries in game tree
search. One option is to prune symmetric joint actions in node
expansion. It is clear that it is sufficient to use only one joint
action of each set of symmetric joint actions in a state for node
expansion because symmetric joint actions lead to symmetric
states and yield the same value in game tree search.

Figure 3: Two non-symmetric action sequences in Tic-tac-toe
that lead to symmetric states.

However, this does not use the full potential of the available
information. In particular, it does not completely avoid the
expansion of both states of a pair of symmetric states. E.g.,
there may be two non-symmetric sequences of joint actions
leading to symmetric states. The expansion of the second
state is not avoided since the action sequences are not sym-

Game depth runtime (in s) # states # symmetries

8puzzle 15 81 389286 1
asteroidsparallel 7 375 1460896 127
asteroids 15 356 2575774 7
chinesecheckers1 11 24 63761 1
chinesecheckers2 7 66 287483 1
connect4 6 147 94372 1
knightmove 7 81 168849 7
knightthrough 4 1071 866625 1
peg 7 265 109154 7
pentago 5 312 661145 7
tictactoeparallel 4 80 117918 127
tictactoe 9 1.2 5478 7
tictictoe 9 8.3 12829 7

Figure 4: This table shows the depth-limit that we used for each game, the average runtime of the normal search, the number
of states expanded by the normal search and the number of symmetries found in the game.

metric. An example is shown in figure 3. A common reason
for this are transpositions. E.g., in our formulation of Tic-tac-
toe the order in which the actions are executed is unimpor-
tant for the resulting state. Therefore, every transposition of
a symmetric action sequence also leads to a symmetric state.
We propose to use a transposition table to detect those sym-

metric states before expanding a node. That means before we
evaluate or expand a state in the game tree we check whether
this state or any state that is symmetric to this one has an entry
in the transposition table. If so, we just use the value stored
in the transposition table without expanding the state. It is
clear, that the algorithm does not use any additional memory
compared to normal search. On the contrary, the transposi-
tion table may get smaller because symmetric states are not
stored. However, the time for node expansion is increased
by the time that it takes to compute the symmetric states and
check whether some symmetric state is in the transposition
table.
Therefore, it is essential to be able to compute hash values

of states and symmetric states very efficiently. We use zobrist
hashing [Zobrist, 1970] where each ground fluent is mapped
to a randomly generated hash value and the hash value of a
state is the bit-wise exclusive disjunction of the hash values
of its fluents. For efficiently computing symmetric states all
ground fluents are numbered consecutively and the symmetry
mappings are tabulated for the fluents. In our implementation
the time to compute all symmetric states for some a state de-
pends on the game and ranges from 150 to 3 times the time
for expanding a state for the 13 games we tried. The time de-
pends on the complexity of the legal and next rules, the
size of the state and the number of symmetries in the game.
We conducted experiments on a selection of games where

we measured the time it took to do a depth-limited search
in every state on a path through the game. We compared nor-
mal search with a transposition table but without checking for
symmetric states (“normal search”), the approach where only
symmetric moves were pruned (“prune symmetric moves”)
and the approach where we check all symmetric states before
expanding a state (“check symmetric states”). Figure 4 shows
runtimes of the “normal search” with and without heuristic
evaluation and the depth limits we used for the games. In

figure 5 the time savings for search with symmetry pruning
compared to “normal search” are shown.
It can be seen that for the majority of games exploiting the

symmetries improves the performance. Also, in most cases
the additional effort of transposition table look-up for all sym-
metric states pays off compared to pruning only symmetric
moves. This is not too surprising because for pruning sym-
metric moves in a state we have to compute the symmetries
that map the state to itself. In many cases this is only slightly
faster then computing all symmetric states.
For some games the overhead of checking for symmetric

states is higher than the gain, most notably asteroidsparallel,
which is just two instances of asteroids played in parallel.
The bad result has several reasons. One problem is that be-
cause of the rather large number of symmetries, computing
all symmetric states is quite expensive. Another reason is that
because of the large branching factor the depth-limit is rela-
tively small, but many symmetric states can only be reached
after longer action sequences. The same is true for knight-
move, where it is hardly possible to reach symmetric states
with seven moves. Additionally, because of the very simple
rules of the game, computing state expansion is fast compared
to computing symmetric states. For tictactoe and tictictoe the
results are near optimal. Because every symmetric state is in-
deed reachable from the initial state and the complete game
tree was searched about 78 = 87:5% of the states were not
explored.
It should be noted that the experiments were run with blind

search, i.e., without a heuristic evaluation of non-terminal leaf
nodes. If heuristic search is used the saved time is increased
by the saved heuristic evaluation time, which may be consid-
erable, depending on the complexity of the heuristic function.
In our game player that means that even in games like 8puzzle
and pentago exploiting symmetries pays off.
In order to avoid big negative impact like in asteroidspar-

allel or knightmove we keep track of the number nsaved of
saved state expansions due to symmetry checking by count-
ing the state expansions in each subtree during search and
storing this number for each state in the transposition ta-
ble. Whenever a symmetric state is found in the transposi-
tion table we can add the stored number to the number of

Figure 5: The chart shows the time savings of using search with pruning symmetric moves and pruning symmetric states
compared to normal search, i.e., without using any symmetry information.nsaved. Based on nsaved we compute an estimate of the
saved time tsaved = nsaved � texp � ntotal � tsym, wheretexp is the average time for expanding a state, ntotal is the
total number of expanded states and tsym is the average time
for computing and checking all symmetric states for a state. Iftsaved < �tlimit we switch to normal search thereby limiting
the negative impact to tlimit.
6 Discussion

The presented method can be used to detect and exploit many
symmetries that often occur in games, e.g.,� object symmetries (functionally equivalent objects),� configuration symmetries (symmetries between collec-

tions of objects and their relations to each other), and� action symmetries (actions leading to symmetric states).

This includes the typical symmetries of board games, like ro-
tation, and reflection, as well as symmetric roles.
None of the tested games contained object symmetries.

This type of symmetries leads to a number of symmetries ex-
ponential in the number of functionally equivalent objects and
should therefore be handledmore efficiently then with our ap-
proach. The method described in [Fox and Long, 2002] for
planning can be easily adapted to the general game playing
domain. Plan permutation symmetries, that are exploited in
e.g., [Long and Fox, 2003], are not to be confused with our
symmetric action sequences. Symmetric plan permutations
are permutations of a plan that lead to the same state, whereas

symmetric action sequences are sequences of element-wise
symmetric joint actions. Plan permutation symmetries are
typically exploited in a game playing program by a transpo-
sition table without any symmetry detection. To our knowl-
edge no previous approach exist that can exploit symmetries
in general games.
Because the symmetry detection is based on the game de-

scription instead of the game graph itself, it can only detect
symmetries that are apparent in the game description. Since
syntactically different rules can have the same semantics,
symmetry detection based on different game descriptions for
the same game may lead to different results. Even adding a
tautological rule to a game description may cause some sym-
metries to not be detected. E.g., adding the following rule
to the blocks world example from figure 1, would mean that
substituting a for b and b for a results in different game de-
scription. Therefore the symmetry between a and b wouldn’t
be detected.

next(clear(a)) :- a\=a.

Consequently, our approach may benefit from removing su-
perfluous rules and transforming the game description to
some normal form.
Another limitation of the approach is that does not allow to

map arbitrary terms to each other. E.g., the approach can not
detect the symmetry in a variant of the blocks world domain,
where we rename a to f(1), because an automorphism only
maps single vertices to each other but f(1) is not represented
by a single vertex in the rule graph. It is in principle possi-

ble to overcome this limitation by propositionalizing a game
description. The resulting rule graphs would be very simi-
lar to propositional automata and could in addition be used
to improve reasoning speed[Schkufza et al., 2008]. However,
this is only feasible for small games because the ground rep-
resentation of the game rules can be exponentially larger than
the original one. Not only does propositionalizing of large
game descriptions take valuable time, but computing auto-
morphisms of the resulting large rule graphs is also more ex-
pensive. Therefore, we are working on partially grounding
the game rules in order to limit the size of the description but
still benefit from the advantages of propositional representa-
tions when possible.

7 Summary

We presented a method to compute symmetries of a game
whose rules a given in the Game Description Language
(GDL). Symmetries are computed by transforming the rules
of the game into a vertex-colored graph and computing auto-
morphisms of this graph. Depending on the game description
our method is able to detect many of the typical symmetries
that occur in games and planning problems. Additionally, we
presented an approach that is able to exploit the detected sym-
metries efficiently in many games.

References

[Aloul et al., 2002] Fadi A. Aloul, Arathi Ramani, Igor L.
Markov, and Karem A. Sakallah. Solving difficult sat in-
stances in the presence of symmetry. In Design Automa-
tion Conference. University of Michigan, June 2002.

[Banerjee et al., 2006] Bikramjit Banerjee, Gregory
Kuhlmann, and Peter Stone. Value function trans-
fer for general game playing. In ICML workshop on
Structural Knowledge Transfer for Machine Learning,
2006.

[Fox and Long, 1999] Maria Fox and Derek Long. The de-
tection and exploitation of symmetry in planning prob-
lems. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 956–961, 1999.

[Fox and Long, 2002] M. Fox and D. Long. Extending the
exploitation of symmetries in planning. In Proceedings of
AIPS’02, pages 83–91, 2002.

[Kuhlmann and Stone, 2007] Gregory Kuhlmann and Peter
Stone. Graph-based domain mapping for transfer learning
in general games. In Proceedings of The Eighteenth Euro-
pean Conference on Machine Learning, September 2007.

[Long and Fox, 2003] D. Long and M. Fox. Symmetries in
planning problems. In Proceedings of SymCon’03 (CP
Workshop), 2003.

[Love et al., 2008] D. Love, T. Hinrichs, D. Haley,
E. Schkufza, and M. Genesereth. General Game
Playing: Game Description Language Specification.
Stanford Logic Group, Stanford University, 353 Serra
Mall, Stanford, CA 94305, March 2008.

[Puget, 2005] Jean-Francois Puget. Automatic detection of
variable and value symmetries. In Peter van Beek, editor,

CP, volume 3709 of Lecture Notes in Computer Science,
pages 475–489. Springer, 2005.

[Schiffel and Thielscher, 2009] Stephan Schiffel and
Michael Thielscher. A multiagent semantics for the game
description language. In International Conference on
Agents and Artificial Intelligence (ICAART). Springer,
2009.

[Schkufza et al., 2008] Eric Schkufza, Nathaniel Love, and
Michael R. Genesereth. Propositional automata and cell
automata: Representational frameworks for discrete dy-
namic systems. In Australasian Conference on Artificial
Intelligence, volume 5360, pages 56–66. Springer, 2008.

[Zobrist, 1970] Albert L. Zobrist. A new hashing method
with application for game playing. Technical Report 88,
University of Wisconsin, April 1970.

