
Factoring General Games

Martin Günther Stephan Schiffel Michael Thielscher
Department of Computer Science

Dresden University of Technology, Germany
{martin.guenther, stephan.schiffel, mit}@inf.tu-dresden.de

Abstract
The goal of General Game Playing is to construct
an autonomous agent that can play games it has
never encountered before. Only the game rules are
given explicitly; interesting and useful properties
of a game are implicit and need to be deduced.
One particular such property is decomposability
into separate subgames that have little interaction
with each other. We present a method to decom-
pose a given game into its subgames by analyzing
the preconditions and effects of actions. Moreover,
a search algorithm that exploits this information in
single-player games is proposed.

1 Introduction
General Game Playing (GGP) is the challenge to build an au-
tonomous agent that can effectively play games that it has
never seen before. Unlike classical game playing programs,
which are designed to play a single game like chess or check-
ers, the properties of these games are not known to the pro-
grammer at design time. Instead, they have to be discovered
by the agent itself at runtime. This demand for higher flexi-
bility requires the use and integration of various Artificial In-
telligence techniques and makes GGP a grand AI challenge.

Held since 2005, the annual General Game Playing com-
petition [Genesereth et al., 2005] fosters research efforts in
this area. Participating systems are pitted against each other
on a variety of different types of games. One special class of
games that appeared in the last two GGP competitions can be
described as composite games: games that are composed of
simpler subgames. Examples from last year’s competition in-
clude “doubletictactoe” (two games of tic-tac-toe, played on
separate boards in parallel) and “incredible amazing blocks
world”, or short “incredible” (a single player game consisting
of a “blocks world” problem, mixed with another simple puz-
zle called “maze”). Although each subgame had a compara-
tively small search space and therefore would have been easy
to solve individually, all of the players showed a bad perfor-
mance on the composite games because of the exponentially
larger search space of the composite game. For example, a
combination of n Tic-Tac-Toe games has an initial branching
factor of 9n, which reduces to n · 9 if decomposability can

be detected and exploited. Current GGP systems lack two
capabilities that would be necessary to play these games on
a human level. First, they are not able to separate the con-
sequence of a move in one of the subgames from a move in
another. Second, even if they were able to extract subgame
information from the game description, the standard search
algorithms have no way of exploiting this information.

In this paper, we address both of these issues: We present a
method to decompose an arbitrary game into subgames, and
we develop an efficient search algorithm for such composite
games in the single-player case. The methods and algorithms
described in this paper have all been successfully integrated
into the GGP system “Fluxplayer”, which has won the com-
petition in 2006 [Schiffel and Thielscher, 2007].

The remainder of this paper is organized as follows. In the
next section, we briefly recapitulate the Game Description
Language from [Genesereth et al., 2005]. In Section 3, we
describe a method for extracting subgame information from a
game description, and in Section 4 we develop a search algo-
rithm for composite, single-player games. We then evaluate
the implementation of the algorithm on a composite game and
conclude with a discussion and comparison to related work.

2 Game Description Language
The Game Description Language (GDL) [Genesereth et al.,
2005; Love et al., 2008] is the language used to communi-
cate the rules of the game to each player. It is a variant of
first order logic, enhanced by distinguished symbols for the
conceptualization of games. GDL is purely axiomatic, i.e. no
algebra or arithmetics is included in the language; if a game
requires this, the relevant portions of arithmetics have to be
axiomatized in the game description.

The class of games that can be expressed in GDL can be
classified as n-player (n ≥ 1), deterministic, perfect infor-
mation games with simultaneous moves. “Deterministic” ex-
cludes all games that contain any element of chance, while
“perfect information” prohibits that any part of the game state
is hidden from some players, as is common in most card
games. “Simultaneous moves” allows to describe games like
“roshambo”, where all players move at once, while still per-
mitting to describe games with alternating moves, like chess
or checkers, by restricting all players except one to a single
“no-op” move. Also, GDL games are finite in several ways:
All reachable states are composed of finitely many fluents;

Figure 1: Some GDL rules of the game “incredible”

1 r o l e (r o b o t) .
2 i n i t (c l e a r (c)) . i n i t (on (c , a)) .
3 i n i t (t a b l e (a)) . i n i t (c e l l (w)) .
4 i n i t (go ld (y)) . i n i t (s t e p (c1)) .

. . .
5 next (on (X,Y)) :− does (r o b o t , s t a c k (X,Y)) .
6 next (t a b l e (X)) :− does (r o b o t , s t a c k (U, _)) ,

t rue (t a b l e (X)) , U \= X.
. . .

7 l e g a l (r o b o t , s t a c k (X,Y)) :− t rue (c l e a r (X)) ,
t rue (t a b l e (X)) , t rue (c l e a r (Y)) , X \= Y.

. . .
8 goa l (r o b o t , 75) :− comple t ed (c a e t o w e r) ,

not comple t ed (b d f t o w e r) , t rue (go ld (w)) .
. . .

9 comple t ed (c a e t o w e r) :− t rue (on (c , a)) ,
t rue (on (a , e)) .

. . .
10 t e r m i n a l :− t rue (s t e p (c20)) .
11 t e r m i n a l :− t rue (go ld (w)) .

there is a finite, fixed number of players; each player has
finitely many possible actions in each game state, and the
game has to be formulated such that it leads to a terminal
state after a finite number of moves. Each terminal state has
an associated goal value for each player, which need not be
zero-sum.

A game state is defined by a set of atomic properties, the
fluents, that are represented as ground terms. The leading
function symbol of a fluent will be called a fluent symbol.

One of these game states is designated as the initial state.
The transitions are determined by the combined actions of all
players. The game progresses until a terminal state is reached.
Example 1. Figure 1 shows the GDL game description1 of
the game “incredible”, which consists of two subgames: the
well-known “blocks world” and “maze”, another very simple
single-player game in which a robot has to find a piece of
gold.

The role keyword (line 1) declares the argument, robot,
to be a player in the game (the only one, in this case).

The initial state of the game is described by the keyword
init (lines 2–4). A blocks world state with six blocks is
described, two of which (a and c) are shown here: c is clear
(no block on top), c is on a, and a is directly on the table.
The fluent symbols cell and gold belong to the subgame
“maze” and describe the positions of the robot and the gold,
respectively.

The fluent step(c1) is a “step counter”, a technicality of-
ten encountered in GDL games. Since only games with finite
length are permitted, the game designer must ensure that all
matches reach a terminal state after a finite number of steps
(if this is not already guaranteed, as in tic-tac-toe). The most
common way to do this is by adding a fluent (here: step)
to the game state, increment its value after each action, and

1We use prolog notation with variables denoted by uppercase let-
ters.

terminate the game when a certain maximal value is reached.
These step counters can have a negative impact on the perfor-
mance of many search enhancements, for example transposi-
tion tables, and also on subgame decomposition (Section 3).
To solve this problem, this paper will include a method to
detect such action-independent fluents.

The keyword next (lines 5–6) defines the effects of the
players’ actions. For example, line 5 declares that, after the
player robot has executed action stack on two blocks X and
Y, these blocks are on (top of) each other in the resulting state.
The reserved keyword does can be used to access the actions
executed by the players, while true refers to all fluents that
hold in the current state. GDL also requires the game designer
to state the non-effects of actions by specifying frame axioms,
as can be seen on line 6: Stacking a block U onto some other
block leaves all blocks X other than U on the table if they have
been on the table before.

The keyword legal (line 7) defines what actions are possi-
ble for each player in the current state; the game designer has
to ensure that each player always has at least one legal action
available. An action is a ground term; its leading function
symbol will be called an action symbol here.

The goal predicate (line 8) assigns a number between 0
(loss) and 100 (win) to each role in a terminal state. It is
defined with the help of the auxiliary predicate completed
(line 9). Auxiliary predicates are not part of the language, but
are defined in the game description itself.

The game is over when a state is reached where the
terminal predicate (lines 10–11) holds.

Predicate bodies may call other predicates. For the analy-
sis of such relationships, the concept of a call graph is often
useful.
Definition 1. Let F be a GDL formula. The call graph
G = 〈V,E〉 for F is the smallest graph with the following
properties:

1. if t is an atomic formula occurring in F , then t ∈ V
2. if there is a game rule r with head h, and t ∈ V and h

are unifiable, then
• all atomic formulæ b1, . . . , bn occurring in the

body of r are elements of E, and
• {〈t, b1〉, . . . , 〈t, bn〉} ⊆ E

The overall goal of "incredible" is to achieve a specific con-
figuration of blocks as well as to bring home the gold. The
best way to play this game is to solve the two subgames in-
dependently and then to combine the solutions. However, the
fact alone that the game is decomposable is not explicit in the
mere game rules.

3 Subgame Detection
In this section, we present a method to determine if a cer-
tain game has independent parts that do not affect each other.
The basic idea is to build a dependency graph of the action
symbols and fluent symbols and then identify the connected
components of this graph. These connected components cor-
respond to the subgames of that particular game.

The dependency graph for the game of “incredible” is
shown in Figure 2. Each fluent symbol and action symbol

Figure 2: Fluent and action dependency graph for the game
“incredible”

of the game is represented by a node in the graph. For each
potential positive or negative effect of an action, an edge from
action symbol to fluent symbol is added. Also, for each pre-
condition, an edge from fluent symbol to action symbol is
added.

Unfortunately, because of the use of frame axioms and
the closed-world assumption, a GDL axiomatization does not
contain explicit information about the positive and negative
effects of an action. We therefore base the construction of the
dependency graph on the following definitions:

Definition 2. Fluent symbol ϕ is a potential positive effect
of action symbol α if there is a game rule next(ϕ(~x)) ← B
such that B does not imply true(ϕ(~x)), and B is compatible
with ∃p, ~y. does(p, α(~y)).

Fluent symbol ϕ is a potential negative effect of action
symbol α if there is no game rule next(ϕ(~x))← B such that
∀p, ~y. (true(ϕ(~x)) ∧ does(p, α(~y)) ⊃ B) .

Definition 3. Fluent symbol ϕ is a potential precondition for
action symbol α if ϕ occurs in the call graph of the body of a
game rule with

• head legal(p, α(~x)), or

• head next(ϕ′(~y)), where ϕ′ is a potential positive or
negative effect of α.

In the definitions above, compatibility means logical con-
sistency under the condition that each player can do only one
action at a time (and assuming both uniqueness-of-names for
action symbols and domain closure for role names). Thus a
fluent is a potential positive effect if it is entailed by a non-
frame axiom compatible with the action in question, and it is
a potential negative effect if there is no frame axiom for this
fluent which is compatible with the action.

It can be easily verified that every actual (positive or neg-
ative) effect must be a potential effect according to this def-
inition. The converse, however, is not true; e. g., the body

of a rule next(F) ← B may only be compatible with some
does(P,A) in states where A is not a legal move. This im-
plies that our dependency graph may contain more arcs than
necessary. Determining the exact positive and negative ef-
fects in a game would in general require to traverse the entire
state space.

It can also easily be seen that this approach fails in the
presence of action-independent fluent symbols, such as step:
By definition, these fluent symbols appear in the positive and
negative effects of all actions. Hence, all actions would end
up in the same connected component, preventing any decom-
position.

To avoid this, we detect an action-independent fluent sym-
bol according to the following definition and put it into a sep-
arate subgame.
Definition 4. A fluent symbol ϕ is called action-independent
if
• the call graph of any axiom with head next(ϕ(~x)) con-

tains no actions or fluents except ϕ, and

• ϕ does not appear in the call graph of the body of any
other next or legal axioms.

The result of finding the connected subgraphs in the depen-
dency graph is a set of subgames Φ = {σ1, . . . , σn}, where
each subgame σi is a pair of sets representing the fluents and
actions of one connected component.
Example 2. As an example, the result of running the subgame
detection algorithm on the game “incredible” is the set Φ =
{σmaze, σblocks, σstep} with

σmaze = ({cell, gold}, {move, grab, drop})
σblocks = ({on, clear, table}, {stack, unstack})
σstep = ({step}, ∅)

This subgame information can be exploited by specialized
search algorithms. In the following section, we will present
such an algorithm for single-player games.

4 Concept Decomposition Search
4.1 Motivation
A naïve search algorithm that exploits subgame information
would be the following: Search each subgame as if it were a
separate game (this is possible because the fluents and actions
of different subgames cannot influence each other), yielding
a local plan (a sequence of actions that leads to a desired goal
state). Then, execute the resulting local plans one after an-
other.

However, this simple approach does not generally find an
optimal solution due to the following two reasons: First, the
goal predicate is only defined on complete states. Therefore,
the local searches cannot determine the goal value of a partial
state using only fluents from one subgame. Second, the lo-
cal plans cannot simply be concatenated, since the terminal
predicate may terminate the game before all plans have been
executed. Instead, it is necessary to interleave the plans, i. e.,
to search all permutations of actions that respect the ordering
of the actions in their respective local plans. This is illustrated
by the following example.

Figure 3: Concept Decomposition Search
function CONCEPTDECOMPOSITIONSEARCH(Φ)

depth← 1
best_glob_plan← ∅
loc_plans← ∅
while (val(best_glob_plan) < 100) do

for each σ ∈ Φ do
loc_plans′ ←

LOCALSEARCH(σ, depth, loc_plans)
loc_plans[σ]← loc_plans[σ] ∪ loc_plans′

end for
best_glob_plan← GLOBALSEARCH(loc_plans)
depth← depth+ 1

end while
return best_glob_plan

end function

Example 3. Consider a game played on the following two
graphs:

pos1(a)
move1(b)−−−−−→ pos1(b)

move1(c)−−−−−→ pos1(c)
and

pos2(x)
move2(y)−−−−−→ pos2(y)

move2(z)−−−−−→ pos2(z)

The initial state is [pos1(a), pos2(x)], and each move ac-
tion moves to the corresponding node on the graph. The two
states [pos1(a), pos2(z)] and [pos1(c), pos2(x)] are termi-
nal and have the goal value 0. The only state with goal value
100 is [pos1(c), pos2(z)].

It is easy to see that the game can be decomposed into two
subgames and that each optimal global plan involves inter-
leaving local plans from both subgames, such as:

[move1(b), move2(y), move2(z), move1(c)]

These considerations motivate the algorithm that will be
presented in the remainder of this section.

4.2 Overview of the Algorithm
The search process (Figure 3) is split into two stages, local
search and global search. Local search only considers one
subgame at a time, collecting all local plans (i. e., sequences
of actions that only contain actions from the given subgame)
that may be relevant to the global solution. In a second step,
global search tries to interleave local plans from different sub-
games to find the best global plan. These two steps are em-
bedded into an iterative deepening framework.

Dividing local and global search, and interleaving local
plans during global search, solves the two problems demon-
strated by the previous example. It enables local search to
collect only those local plans that might have a novel effect
on the global goal and terminal predicates, while deferring
evaluation of these predicates to the point when the complete
state is known.

4.3 Local Search
LOCALSEARCH (Figure 4) searches the game tree of sub-
game σ up to the given depth, returning all relevant local
plans that are not yet contained in loc_plans[σ].

Figure 4: Local Search
function LOCALSEARCH(σ, depth, loc_plans)

loc_plans′ ← ∅
traverse tree using LIMITEDDEPTHSEARCH(σ, depth)
for each leaf_node reached via actions plan do

plan_sig ← CALCULATEPLANSIG(plan)
if 〈plan_sig, _〉 /∈ loc_plans′∪ loc_plans[σ] then

loc_plans′ ← loc_plans′ ∪ 〈plan_sig, plan〉
end if

end for
return loc_plans′

end function

Figure 5: Global Search
function GLOBALSEARCH(loc_plans)

best_glob_plan← ∅
subsets← CHOOSEPLANS(loc_plans)
for each plan_set ∈ subsets do

glob_plan← COMBINEPLANS(plan_set)
if val(glob_plan) > val(best_glob_plan) then

best_glob_plan← glob_plan
end if

end for
return best_glob_plan

end function

LIMITEDDEPTHSEARCH is any standard tree search algo-
rithm; when it reaches a leaf node, it checks if the action se-
quence plan (i. e. the sequence of actions from the root of the
search tree to the leaf node) constitutes a “relevant” new local
plan.

This notion of relevance is based on the following claim:
Not all local plans have to be included into the global search.
Instead, it is possible to compute some characteristics of lo-
cal plans, here called plan signature, with the property that,
if two local plans have the same plan signature, it does not
matter which one of them is included in the global search.

This plan_sig is calculated by a function CALCU-
LATEPLANSIG, whose inner workings will be examined in
Section 4.6; for now, it suffices to treat it as a black box.

4.4 Global Search

In between local search iterations, global search (Figure 5)
tries to find a globally optimal execution order of the local
plans. Global search thus is not a state space search, but a
search on the space of plans.

The function CHOOSEPLANS simply calculates all subsets
of loc_plans that include at most one plan from each sub-
game. Then, COMBINEPLANS (Section 4.5) tries to find an
execution order of the actions in each of those plan_sets such
that the resulting global plan can be executed (i. e., does not
reach a terminal state until all its actions have been executed).

After all possible global plans have been evaluated, the one
with the highest goal value is returned.

Figure 6: CombinePlans
global variable visited : N× . . .× N︸ ︷︷ ︸

n times

→ {true, false}

function COMBINEPLANS(plan_set)
return CPR(plan_set, [0, 0, . . . , 0], initial_state)

end function

function CPR({plan1, . . . , plann}, pos, state)
let pos = [p1, . . . , pn]
let plan1 = [action1

1, action
1
2, . . . , action

1
m1

]
let plan2 = [action2

1, action
2
2, . . . , action

2
m2

]
...
let plann = [actionn

1 , action
n
2 , . . . , action

n
mn

]
if visited[pos] = true then

return fail
else if pos = [m1,m2, . . . ,mn] then

return ∅
end if
for i = 1, . . . , n do

if pi < mi then
state′ ← EXECUTE(actioni

pi+1, state)
pos′ ← [p1, . . . , pi−1, pi + 1, pi+1, . . . , pn]
res← CPR({plan1, . . . , plann}, pos′, state′)
if res 6= fail then

return [actioni
pi+1 ◦ res]

end if
end if

end for
visited[pos]← true
return fail

end function

4.5 Combination of Plans
The purpose of COMBINEPLANS is to combine a set of plans
{plan1, . . . , plann} such that the resulting global plan does
not reach a terminal state prematurely.

Using a dynamic programming technique (Figure 6), all
valid sequences of actions can be enumerated in m1 ∗ · · · ∗
mn steps, where the mi are the lengths of the local plans.
The idea is to search the plan space recursively via depth-first
search, while maintaining a map of already visited nodes, so
that no node is visited twice. Each node of the search space is
determined by the set of executed actions, without regarding
their order. Since there are only m1 ∗ · · · ∗mn unique nodes
in the search space and each of them is at most visited once,
both space and time complexity are polynomial in the number
of actions.

4.6 Calculating Plan Signatures
So far, we have avoided the topic what exactly constitutes a
“plan signature”. The only requirement was that, if two local
plans have the same plan signature, both of them must be
equivalent with respect to the global search.

One obvious feature that distinguishes one local plan from
another is the final state that is reached by executing the plan.
More precisely, only those fluents of the final state that also

appear in the goal and terminal predicates need to be con-
sidered.

Unfortunately, comparing the final states of two local plans
is not enough. As demonstrated by the example in Sec-
tion 4.1, the terminal predicate can make the combination
of local plans more complicated or even impossible, depend-
ing on the order in which fluents from the terminal predi-
cate become true or false in the intermediary states of a local
plan. Therefore, if two local plans from the same subgame
reach the same final state, but the sequence of terminal fluents
in the intermediary states is different, both must be returned
to be considered by the global search. Thus, the sequence of
terminal fluents must be part of the plan signature.

Including all possible combinations of terminal fluents
in the plan signature would drastically increase the number of
local plans that local search returns, thereby eliminating the
benefit of factoring the game into subgames. Therefore, we
perform a deeper analysis of the goal and terminal predi-
cates to identify specific combinations of fluents that need to
be considered. The idea of this approach is to split the goal
and terminal predicates into subpredicates that are local to
a single subgame. These subpredicates often represent a con-
cept like “checkmate” or “line” that is used to describe the
terminal and goal states abstractly. Hereafter, these subpredi-
cates will be called local goal (resp. terminal) concepts.
Definition 5. A local goal (resp. terminal) concept, or short
“local concept”, is a ground predicate call that occurs in the
call graph of the goal (resp. terminal) predicate. The call
graph of a local goal (resp. terminal) concept must only con-
tain fluents from exactly one subgame.

To find these concepts, call graphs of the goal and
terminal predicates are built. These graphs are then tra-
versed from the root nodes (goal or terminal) downward
until a predicate is found whose children all belong to the
same subgame. The algorithm requires that the part of the
call graph up to the local concepts is ground (contains no
variables). Also, recursion is only allowed inside the local
concepts (i. e., a local concept may not appear in the body of
itself or another local concept, or in the body of a predicate
that appears in the body of a local concept and so on).
Example 4. The goal and terminal call graphs of “incredible”
are depicted in Figure 7. Application of the algorithm leads
to the following local goal and terminal concepts:
• true(gold(w)) (goal and terminal concept of σmaze)
• completed(bdftower) (goal concept of σblocks)
• completed(caetower) (goal concept of σblocks)
• true(step(c20)) (goal and terminal concept of σstep)

Definition 6. A concept evaluation for a given state s from
subgame σ is a tuple of boolean values 〈b1, b2, . . . , bn〉. As-
suming a fixed order among the local concepts, bi (1 ≤ i ≤
n) corresponds to the evaluation of the ith local (goal or ter-
minal) concept of σ in state s.
Example 4 (cont.). In the initial state of “incredible”, the
concept evaluation of σmaze is 〈false〉, that of σblocks is
〈false, false〉 and that of σstep is also 〈false〉.

One last auxiliary definition is the following:

(a) goal predicate

(b) terminal predicate

Figure 7: Call graphs of the game “incredible”

Table 1: Comparison of Concept Decomposition Search and
standard Fluxplayer search algorithm on the game “incredi-
ble”

computed
states

computation
time [s]

Decomposition Search 3,212 45.331
Standard Fluxplayer 41,191,436 8510.648

Definition 7. The terminal concept evaluation sequence for
a given local plan p from subgame σ is a sequence of concept
evaluations for σ, but restricted to terminal concepts, of all
states that are traversed by executing p. Repeated elements
of this sequence are omitted.

With this in hand, we can finally give a formal definition of
the term “plan signature”.
Definition 8. A plan signature of a local plan p is a pair
〈s, t〉, where s is the concept evaluation of the final state
reached by executing p, and t is the terminal concept eval-
uation sequence of p.

5 Experiments
The algorithms described above have been implemented and
integrated into the General Game Player Fluxplayer. Here
we present experimental results for the game of “incredible”.
The experiments were carried out on a Pentium M 1.7 GHz
CPU and 1 GB of RAM.

Table 1 shows the results of running the subgame de-
composition algorithm, followed by concept decomposition
search. Both the number of expanded states and the CPU time
is shown. For comparison, the results of running Fluxplayer’s
standard non-uniform search [Schiffel and Thielscher, 2007]
are also listed.

6 Discussion
We have presented an automatic decomposition method for
general games, and a search algorithm for single player gen-
eral games that builds on top of it. In this section, we will

relate our results to previous work and suggest directions for
future improvements.

Subgame decomposition could be improved by proposi-
tionalizing parts of the fluents and actions. This would allow
decomposition into more subgames, improving the efficiency
of the search algorithm at the cost of a higher computational
complexity of the decomposition algorithm.

The issue of searching single-player general games has al-
ready been addressed by research in planning, most notably
three algorithms in the area of Factored Planning: PartPlan
[Amir and Engelhardt, 2003], LID-GF [Brafman and Domsh-
lak, 2006] and dTreePlan [Kelareva et al., 2007]. Similar to
Concept Decomposition Search, PartPlan and LID-GF find
all local plans in the different subdomains, then combine
them into a global plan. The approach of dTreePlan is differ-
ent in that it does not search subdomains exhaustively before
searching the parent, but instead uses a depth-first search with
backtracking over subdomains.

A key difference between the present paper and the Fac-
tored Planning approaches is the problem encoding at hand.
The dTreePlan algorithm uses the more restricted STRIPS
formalism. While a large part of the algorithm can be ex-
tended to more expressive formalisms, the goal predicate
must be a STRIPS-style goal formula, i. e., a conjunction of
non-negated fluents. This is usually not the case in GDL
games. While PartPlan uses the situation calculus, and LID-
GF the SAS+ formalism, their results can be generalized to
PDDL, so they do not have this restriction.

The presence of frame axioms in GDL makes the analysis
of the preconditions and effects of an action harder than in
either of the planning formalisms. Another difference is the
presence of the terminal predicate in GDL. This adds an-
other level of possible interactions between subgames, which
is handled by the terminal concept evaluation sequence in our
algorithm. Also, the Factored Planning algorithms only op-
erate on the fluent level and not on concepts; this is probably
due to the fact that derived predicates are very common in
GDL games, but not widely used in PDDL.

Since the Factored Planning approaches allow for a greater
deal of interaction between subgames, unifying Concept De-
composition Search and Factored Planning would be desir-
able.

Future work could also be done on other forms of indepen-
dence, like parallel independence: games where each action
makes a move in all independent subgames simultaneously.

On the topic of multi-player games, decomposition search
[Müller, 1999] presents a search method for decomposable
two-person games based on combinatorial game theory [Con-
way, 1976]. It does not, however, contain an automatic
method for decomposition of general games. Our decompo-
sition method can deliver a subgame decomposition that can
be used by two-player decomposition search, which is an im-
portant topic for future work. Also, search methods for non-
combinatorial multi-player games (decomposable games that
have more than two players, feature simultaneous moves or
do not have zero-sum awards) are needed.

References
[Amir and Engelhardt, 2003] Eyal Amir and Barbara Engel-

hardt. Factored planning. In Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence, pages
929–935, Acapulco, Mexico, August 9–15, 2003. Morgan
Kaufmann.

[Brafman and Domshlak, 2006] Ronen I. Brafman and
Carmel Domshlak. Factored planning: How, when, and
when not. In Proceedings of the 21st National Conference
on Artificial Intelligence and the 18th Innovative Applica-
tions of Artificial Intelligence Conference, pages 809–814,
Boston, Massachusetts, USA, July 16–20, 2006. AAAI
Press.

[Conway, 1976] John Horton Conway. On Numbers and
Games. Number 6 in London Mathematical Society
Monographs. Academic Press, London, 1976.

[Genesereth et al., 2005] Michael R. Genesereth, Nathaniel
Love, and Barney Pell. General Game Playing: Overview
of the AAAI competition. AI Magazine, 26(2):62–72,
2005.

[Kelareva et al., 2007] Elena Kelareva, Olivier Buffet, Jinbo
Huang, and Sylvie Thiébaux. Factored planning using de-
composition trees. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, pages
1942–1947, Hyderabad, India, January 6–12, 2007.

[Love et al., 2008] Nathaniel Love, Timothy Hinrichs,
David Haley, Eric Schkufza, and Michael Genesereth.
General game playing: Game description language
specification. Technical Report LG-2006-01, Stanford
University, March 2008.

[Müller, 1999] Martin Müller. Decomposition search: A
combinatorial games approach to game tree search, with
applications to solving go endgames. In Proceedings of
the 16th International Joint Conference on Artificial In-
telligence, pages 578–583, Stockholm, Sweden, July 31 –
August 6, 1999. Morgan Kaufmann.

[Schiffel and Thielscher, 2007] Stephan Schiffel and
Michael Thielscher. Fluxplayer: A successful general
game player. In Proceedings of the 22nd AAAI Conference
on Artificial Intelligence, pages 1191–1196, Menlo Park,
California, USA, July 22–26, 2007. The AAAI Press.

	Introduction
	Game Description Language
	Subgame Detection
	Concept Decomposition Search
	Motivation
	Overview of the Algorithm
	Local Search
	Global Search
	Combination of Plans
	Calculating Plan Signatures

	Experiments
	Discussion

